Abstract:
A system includes a network controller to communicate with a telecommunications network. The network controller is coupled to one or more unlicensed wireless base stations serving one or more unlicensed wireless access areas. Each unlicensed wireless access area is mapped to one or more licensed wireless access areas. The system includes a mobile station to communicate with the telecommunications network using a licensed wireless communication channel serviced by the telecommunications network in a licensed wireless access area, and an unlicensed wireless communication channel in an unlicensed wireless access area. The mobile station is associated with a licensed wireless network identifier and a licensed wireless location identifier when the mobile station is in the licensed wireless access area and is associated with an unlicensed wireless network identifier and an unlicensed wireless location identifier when the mobile station is in the unlicensed wireless access area.
Abstract:
A method of making an alloy includes mechanically alloying aluminum with an alloying element to form an alloy. The method may include a subsequent step of compacting the alloy powder to form an aluminum alloy compact. The alloying element may be chromium (Cr), nickel (Ni), molybdenum (Mo), titanium (Ti), manganese (Mn), vanadium (V), niobium (Nb), or silicon (Si).
Abstract:
Methods and apparatuses, including computer program products, are described for identifying an application server in a plurality of application servers associated with a shared identifier in an Internet Protocol Multimedia Subsystem (IMS) network. The method includes receiving, from a Signaling System 7 (SS7) network, a message including a mobile device identifier associated with a mobile device connected to the IMS network and determining the identity of an application server in the plurality of application servers associated with the shared identifier. The determining step includes extracting the mobile device identifier from the message and retrieving, from a data storage module, an application server identifier associated with an application server based on the extracted mobile device identifier. The application server associated with the retrieved identifier provides service to the mobile device. The method also includes transmitting the message to the application server associated with the retrieved identifier.
Abstract:
Described are methods and apparatuses, for selectively terminated custom application in a telecommunications network. A Gateway Mobile Switching Center (GMSC) receives a request to initiate a call session to a subscriber device in a service area of a first Mobile Switching Center (MSC). The GMSC established a dialogue to implement the custom application on the subscriber device. The GMSC receives a message indicating that the subscriber device is moving from the first MSC to a second MSC. The GMSC analyzes a service key of the custom application to determine if the dialogue should be terminated and determines that the dialogue should be terminated so that the custom application is continued on the subscriber device.
Abstract:
Virtually partition control and line cards of network element into virtual partition A and virtual partition B, each including a control card and a line card. Redistribute sessions serviced by cards of virtual partition A to cards of virtual partition B. Then change software on, at least, line card of virtual partition A, while cards of virtual partition B service sessions, including sessions redistributed from cards of virtual partition A. Next redistribute sessions serviced by cards of virtual partition B to cards of virtual partition A. Then change software on line card of virtual partition B and control card of virtual partition B, while cards of virtual partition A service sessions including sessions redistributed from cards of virtual partition B. Next eliminate virtual partitions and redistribute portion of sessions currently serviced by cards of virtual partition A to cards of virtual partition B.
Abstract:
In the context of cloud computing, effective methods and arrangements for storing and tracking provenance. In accordance with at least one embodiment, a distributed file system is advantageously employed to store large amounts of provenance data. File creation involves the creation both of output files and reduce logs.
Abstract:
The present invention provides methods and compositions for making and using transgenic plants that exhibit increased nitrogen storage capacity compared to wild-type plants. Methods of the invention comprise inducing overexpression of monocot-derived vegetative storage proteins (VSPs) in plants, particularly in monocots. In some embodiments, at least one nucleotide construct comprising a nucleotide sequence encoding the ZmLox6 protein or a biologically active fragment or variant thereof is introduced into a plant. Depending upon the objective, the nucleotide construct may optionally comprise an operably linked coding sequence for a vacuolar sorting signal or plastid transit peptide in order to direct storage of the ZmLox6 protein or biologically active fragment or variant thereof into the vacuolar compartment or plastid compartment, respectively, of the cells in which the VSP is expressed. The invention further provides methods for producing plants with increased nitrogen content and/or increased nutritional value, which is desirable in commercial crops, including those used for forage, silage, and grain production.
Abstract:
The present invention provides polynucleotides and related polypeptides (SEQ ID NO: 1 and 2) of the ZmARGOS (Auxin-Regulated Gene involved in Organ Size) gene family. The invention provides genomic sequence for the ZmARGOS genes. ZmARGOS is responsible for controlling plant growth, organ size and yield in crop plants. Transgenic plants expressing ZmARGOS show a positive impact on biomass accumulation and rate of maize plant growth, as well as an increase in organ size. These maize genes will find utility for enhancing agronomic traits in maize (and other crops).
Abstract translation:本发明提供了ZmARGOS(参与器官大小的生长调节基因)基因家族的多核苷酸和相关多肽(SEQ ID NO:1和2)。 本发明提供了ZmARGOS基因的基因组序列。 ZmARGOS负责控制作物植物的生长,器官大小和产量。 表达ZmARGOS的转基因植物对生物量积累和玉米植物生长速率以及器官大小的增加有积极的影响。 这些玉米基因将用于提高玉米(和其他作物)的农艺性状。
Abstract:
Some embodiments provide a method of identifying a list of Femtocell Access Points (FAPs) for a user equipment (UE) communication session in a communication system including a first wireless communication system and a second wireless communication system. The second wireless communication system includes multiple FAPs and a Femtocell gateway (FGW) that communicatively couples the FAPs to the first wireless communication system. The method receives information about a UE that has detected a particular FAP that has an identification attribute. The method uses the UE information to retrieve a set of FAPs designated for the UE where the FAPs in the set of FAPs have the same identification attribute as the particular FAP. The retrieved set of FAPs is from a set of several FAPs that are not designated for the UE but have a same identification attribute as the particular FAP.
Abstract:
Some embodiments are implemented in a communication system that includes a first wireless communication system and a second wireless communication system that includes a Femtocell access point (FAP) and a network controller that can communicatively couple the FAP to the first wireless communication system. In some embodiments, the network controller can communicatively couple to the first wireless communication system through a UTRAN Iu interface. Some embodiments provide a resource management method that determines that a user equipment (UE) has roved in a region serviced by the FAP. The FAP includes a generic access resource control (GA-RC) protocol sub-layer. The method creates a separate GA-RC state dedicated to the UE in the GA-RC protocol sub-layer. The method also sets the GA-RC state dedicated to the UE to a deregistered state to indicate that the UE is not registered to use the services of the wireless communication system.