Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
Various layer separation states are generated by the combination of a polyamide acid ester and a polyamide acid and a long residual image characteristic cannot be further improved merely by combining them. A liquid crystal display device comprises a substrate, a liquid crystal layer, and an orientation film placed between the substrate and the liquid crystal layer. The orientation film comprises a polyimide precursor having two or more components. In the polyimide precursor, an octanol-water partition coefficient is defined as log P and the difference in log P (Δ log P) between the two components having most distant log Ps is set so as to fall within a prescribed range.
Abstract:
According to one embodiment, a liquid crystal display panel includes a first substrate, a second substrate, a sealant and a liquid crystal layer. The first substrate includes a switching element and a pixel electrode. The second substrate includes a first organic insulating film in which a first trench portion is formed, a projection formed beneath the first organic insulating film, and a first barrier layer. The first barrier layer is formed continuously from an inside of the first trench portion to under the projection.
Abstract:
To prevent a phenomenon that an alignment film material is difficult to flow into the through-hole where a diameter of a through-hole for connecting between a pixel electrode and a source electrode is reduced.A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes first and second substrates, at least one of which is transparent, a liquid crystal layer which is disposed between the first and second substrates, a pixel electrode and a common electrode which are formed on one of the first and second substrates and which apply an electric field to the liquid crystal layer, a plurality of active elements which is connected to the pixel electrode and the common electrode, an alignment film which is disposed on at least one of the first and second substrates and has one surface contacting the liquid crystal layer, and an underlying layer which is disposed on at least one of the first and second substrates and contacts the other surface of the alignment film. The pixel electrode is laminated on the common electrode having a plane shape through an isolation film.
Abstract:
A liquid crystal display device includes a liquid crystal composition, a thin film transistor substrate as an insulation substrate on which a thin film transistor for controlling the orientation of the liquid crystal composition is provided, and a color filter substrate which seals the liquid crystal composition between itself and the thin film transistor substrate and controls a wavelength region of the transmitted light. The thin film transistor substrate includes a projection part extending from the thin film transistor substrate to the color filter substrate side, and a wall-like electrode on a wall surface of the projection part, which is one electrode for controlling the orientation of the liquid crystal composition. An insulation film and an orientation film are sequentially laminated on the wall-like electrode continuously from a surface parallel to a substrate surface.
Abstract:
According to one embodiment, a liquid crystal optical element according to one embodiment includes a substrate, a plurality of structures aligned at a prescribed pitch in each of a plurality of first areas, and a liquid crystal layer arranged across the plurality of first areas and a second area surrounding each of the plurality of first areas. The liquid crystal layer includes first liquid crystal molecules arranged in the first areas between the adjacent structures and aligned along the structures, and second liquid crystal molecules having the long axes aligned in the same direction in the second area.
Abstract:
To realize a stretchable electronic device having high reliability. The configuration of the present invention is as follows. In a stretchable electronic device in which an active area and a terminal area are continuously formed, a scanning line having a meander structure and a signal line having a meander structure are formed in the active area, terminal wirings and terminals are formed on a base material extending in a second direction and aligned in a first direction in the terminal area, and the base material configures a reinforcing material continuous in the first direction in the part where the terminal is formed.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.