Abstract:
A computer system may receive a textual work relating to a work of authorship using an input device that is coupled to the computer system. The computer system may have a processor and a memory storing one or more natural language processors. The computer system may ingest the textual work using the natural language processing modules. The computer system may identify content in the work of authorship that corresponds to one or more ratings components. The computer system may obtain a user profile that indicates a tolerance level of the user to at least one of the ratings components. The computer system may generate a rating for the work of authorship using the user profile.
Abstract:
Techniques are disclosed to determine an expected or predicted opinion of a target individual. To do so, a deep question answer system may build a corpus which includes a first collection of documents attributable to a first person and a second collection of documents identified from content in the first collection of documents and evaluate the corpus to build a model representing opinions of the first person relative to topics, concepts, or subjects discussed in the first and second collections of documents. The deep question answer system may also receive a request to predict an opinion of the first person regarding a topic and generate a predicted opinion of the first person regarding the topic from the model.
Abstract:
A processor uses natural language processing to ingest product reviews for a plurality of products. Each of the products embodies a specific form for each of the plurality of product features. The processor analyzes the ingested product reviews for sentiments associated with the specific forms. The processor generates a sentiment score for each product feature based on the analysis. The processor ranks the plurality of product features based on the sentiment scores.
Abstract:
A computer-implemented method of managing perspective data associated with a common feature in items is disclosed. The method can include identifying a common feature in a first item and a second item, the first item having a set of perspective data and establishing a subset of perspective data associated with the common feature. The method can include associating the subset of perspective with the second item. The method can include determining a set of relevancy scores for the subset of perspective data associated with the common feature and establishing a set of relevant perspective data from the subset of perspective data. The set of relevant perspective data can have relevancy scores outside of a relevancy threshold. The method can include associating the set of relevant perspective data with the second item.
Abstract:
A computer-implemented method for cognitive matching of narrative data may include collecting a set of data for a party and determining, by analyzing the set of data, an identifiable event for the party. In addition, the method may include identifying, using the identifiable event, a relevant feature of a corpus and providing an output corresponding to the relevant feature.
Abstract:
First, a computer may receive an input query of a first medium type. The input query may then be analyzed. Based on the analysis, the input query may be categorized as being associated with at least a second medium type. A first-medium-type search of a set of corpora may then be performed. Based on the results of the first-medium-type search, a candidate answer of the first medium type may be generated. In response to the categorizing, a second-medium-type search of the set of corpora may also be performed.
Abstract:
A computer-implemented method of managing perspective data associated with a common feature in items is disclosed. The method can include identifying a common feature in a first item and a second item, the first item having a set of perspective data and establishing a subset of perspective data associated with the common feature. The method can include associating the subset of perspective with the second item. The method can include determining a set of relevancy scores for the subset of perspective data associated with the common feature and establishing a set of relevant perspective data from the subset of perspective data. The set of relevant perspective data can have relevancy scores outside of a relevancy threshold. The method can include associating the set of relevant perspective data with the second item.
Abstract:
A computer-implemented method of managing perspective data associated with a common feature in items is disclosed. The method can include identifying a common feature in a first item and a second item, the first item having a set of perspective data and establishing a subset of perspective data associated with the common feature. The method can include associating the subset of perspective with the second item. The method can include determining a set of relevancy scores for the subset of perspective data associated with the common feature and establishing a set of relevant perspective data from the subset of perspective data. The set of relevant perspective data can have relevancy scores outside of a relevancy threshold. The method can include associating the set of relevant perspective data with the second item.
Abstract:
A system and computer implemented method for managing perspective data is disclosed. The method may include collecting a first lot of perspective data for an item. The method may include introducing a variant feature to the item to constitute a modified item. The method may include collecting a second lot of perspective data for the modified item. The method may also include evaluating the first and second lots of perspective data to ascertain a sentiment fluctuation based on information relevant to the variant feature.
Abstract:
A cohort analysis mechanism analyzes cohorts with similar attributes to extrapolate additional knowledge and answer a question in a question answering system. The cohort analysis mechanism identifies cohorts for an entity of the question and extracts relevant data concerning the cohorts. The cohort analysis mechanism aggregates the relevant information for evidence scoring and answer scoring to answer a question posed to the question answering system. The aggregating of the data includes combining and ranking answers from the cohorts, gathering evidence and then answering the question with the gathered evidence.