Abstract:
One embodiment describes an electronic display. The electronic display includes display driver circuitry that displays at least a first image frame and a second image frame on the electronic device using a first display pixel and a second display pixel. The electronic display also includes touch sensing circuitry that detects user interaction with the electronic display. A timing controller of the electronic display determines at least a first insertion time for a first intra-frame pause for the first image frame and a second insertion time for a second intra-frame pause for the second image frame. The first and second intra-frame pauses are periods where the display driver circuitry is pauses rendering of image data to allow the touch sensing circuitry to detect user interaction. The insertion times for the first and second intra-frame pauses are varied from one another. The timing controller inserts the first intra-frame pause during rendering of the first image frame at the first insertion time and inserts the second intra-frame pause during rendering of the second image frame at the second insertion time.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may implement a physically derived circuit model of the pixels. A charge accumulation input response matrix and a charge accumulation state response matrix for the model may be stored in look-up table circuitry and used in computing a current charge accumulation state based on current pixel voltage information and previous state information. The impact of temperature, backlight illumination level, frame duration, and other factors may be taken into account in evaluating the current charge accumulation state.
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
One embodiment describes an electronic display. The electronic display includes display driver circuitry that displays at least a first image frame and a second image frame on the electronic device using a first display pixel and a second display pixel. The electronic display also includes touch sensing circuitry that detects user interaction with the electronic display. A timing controller of the electronic display determines at least a first insertion time for a first intra-frame pause for the first image frame and a second insertion time for a second intra-frame pause for the second image frame. The first and second intra-frame pauses are periods where the display driver circuitry is pauses rendering of image data to allow the touch sensing circuitry to detect user interaction. The insertion times for the first and second intra-frame pauses are varied from one another. The timing controller inserts the first intra-frame pause during rendering of the first image frame at the first insertion time and inserts the second intra-frame pause during rendering of the second image frame at the second insertion time.
Abstract:
A device includes a timing test circuit. The timing test circuit receives a timing signal related to the display of an image on a display. The timing test circuit also determines if the timing signals are invalid. Moreover, the timing test circuit transmits a fault indication when the timing signals are determined to be invalid.
Abstract:
This application relates to methods and apparatus for refreshing a display device at various frequencies. Specifically, multiple areas of the display device can be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
To reduce image artifacts induced by temperature variations associated with display pixels of an electronic display, processing circuitry may process temperature sensing data to obtain an average temperature and a temperature distribution of the electronic display. Based on the processed temperature data, the processing circuit may adjust a reference voltage applied to the display pixels to compensate for the average temperate. To further correct for the image artifacts, the processing circuitry may transform image data to luminance domain. Based on the processed temperature data, the processing may adjust luminance vales of the image data to compensate for the temperature distribution.
Abstract:
An electronic device may have a camera and a display. The display may be configured to display virtual reality content for a user in which no real-world content from the camera is displayed or mixed reality content in which a combination of real-world content from the camera and overlaid virtual reality content is displayed. Control circuitry in the device may adjust the display and camera while transitioning between virtual reality and mixed reality modes. The control circuitry may reconfigure the camera to exhibit a desired frame rate immediately upon transitioning from virtual reality mode to mixed reality mode. Transitions between modes may be accompanied by smooth transitions between frame rates to avoid visible artifacts on the display. The camera frame rate may be synchronized to the display frame rate for at least part of the transition between the virtual reality and mixed reality modes.
Abstract:
An electronic device display may have pixels formed from crystalline semiconductor light-emitting diode dies, organic light-emitting diodes, or other pixel structures. The pixels may be formed on a display panel substrate. A display panel may extend continuously across the display or multiple display panels may be tiled in two dimensions to cover a larger display area. Interconnect substrates may have outwardly facing contacts that are electrically shorted to corresponding inwardly facing contacts such as inwardly facing metal pillars associated with the display panels. The interconnect substrates may be supported by glass layers. Integrated circuits may be embedded in the display panels and/or in the interconnect substrates. A display may have an active area with pixels that includes non-spline pixels in a non-spline display portion located above a straight edge of the display and spline pixel in a spline display portion located above a curved edge of the display.