Abstract:
A gallium nitride-based III-V Group compound semi-conductor device has a gallium nitride-based III-V Group compound semiconductor layer provided over a substrate, and an ohmic electrode provided in contact with the semiconductor layer. The ohmic electrode is formed of a metallic material, and has been annealed.
Abstract:
A method according to the present invention for fabricating high light extraction photonic devices comprising growing an epitaxial semiconductor structure on a substrate and depositing a first mirror layer on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first mirror layer and the substrate. Flip-chip mounting the epitaxial semiconductor structure, with its first mirror and substrate on a submount such that the epitaxial semiconductor device structure is sandwiched between the submount and substrate. The substrate is then removed from the epitaxial structure by introducing an etch environment to the substrate. A second mirror layer is deposited on the epitaxial semiconductor structure such that the epitaxial semiconductor structure is sandwiched between the first and second mirror layers. A device according to the present invention comprising a resonant cavity light emitting diode (RCLED) mounted to a submount.
Abstract:
A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
Abstract:
A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.
Abstract:
A gallium nitride-based III-V Group compound semi-conductor device has a gallium nitride-based III-V Group compound semiconductor layer provided over a substrate, and an ohmic electrode provided in contact with the semiconductor layer. The ohmic electrode is formed of a metallic material, and has been annealed.
Abstract:
A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) (42) of the LED and a surface of the N-face (42) is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face (42) is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
Abstract:
A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {10 11} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {10 13} gallium nitride (GaN) grown on a {110} spinel substrate, (3) {11 22} gallium nitride (GaN) grown on a {1 100} sapphire substrate, and (4) {10 13} gallium nitride (GaN) grown on a {1 100} sapphire substrate
Abstract:
An (Al, Ga, In)N and ZnO direct wafer bonded light emitting diode (LED) combined with a shaped plastic optical element, in which the directional light from the ZnO cone, or from any high refractive index material in contact with the LED surface, entering the shaped plastic optical element is extracted to air.
Abstract:
A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.