Abstract:
A method and device for determining the intensity and phase distribution of a coherent light beam, in a plane, including measuring the intensity Ii, i=1 . . . N, of the beam, in N planes, N≧3, having the plane wherein intensity and phase distribution is to be determined, choosing, for plane i=1, an initial phase matrix &phgr;1 and calculating a complex amplitude matrix, by term-wise multiplying the phase matrix ei&phgr;1 by the corresponding amplitude matrix A1, for each plane j>1: determining a propagated complex matrix B′j from the measured amplitude matrix Aj−1 of plane j−1 and the phase matrix &phgr; of plane j−1, extracting, from B′j, a phase matrix of plane j, and iterating the method up to convergence, with j=1 when j−1=N.
Abstract:
An infrared countermeasures system is provided by ganging a plurality of modulators each of which modulates the output of a radiant source to generate at least one collimated beam of radiation. The modulators are so disposed with respect to each other that the beams generated the reby are staggered in angular phase. When the modulators are rotated together they will provide at a point in space remote therefrom a signal comprising a burst of pulses followed by a dead time when no signal is present.
Abstract:
Automated systems and methods for processing substrates are described. An automated processing system includes: a vacuum chamber; a substrate support located inside the vacuum chamber and constructed and arranged to support a substrate during processing; and a substrate alignment detector constructed and arranged to detect if the substrate is misaligned as the substrate is transferred into the vacuum chamber based upon a change in a physical condition inside the system. The substrate alignment detector may include a vibration detector coupled to the substrate support. A substrate may be transferred into the vacuum chamber. The position of the substrate may be recorded as it is being transferred into the vacuum chamber. Misalignment of the substrate with respect to the substrate support may be detected. The substrate may be processed. The processed substrate may be unloaded from the vacuum chamber. The position of the processed substrate may be recorded as it is being unloaded from the vacuum chamber. Any substrate misalignment may be compensated for based upon the difference in the recorded substrate positions.
Abstract:
An infrared sensor is formed with a first infrared detecting element for infrared detection disposed in a container through a supporting substrate, and a second infrared detecting element for temperature compensation also disposed in the container to be shielded by the supporting substrate of the first infrared detecting element from incident infrared within the container, while a temperature sensing section of the first infrared detecting element is born in non-contacting state with respect to a supporting part of the substrate for the element, whereby the sensitivity can be remarkably improved with a simpler arrangement while keeping a high precision and inexpensiveness.
Abstract:
A system which determines one or more properties of a lens includes a light source and a target pattern illuminated by the light source illuminates and substantially positioned at a first conjugate position of the lens. A detector, including an active surface, is positioned at a second conjugate position of the lens such that an image of the target pattern is formed on the active surface. The detector generates an analog electrical signal based on the image and the a generator converts the electrical signal to a representative digital signal for processing. In the system, the detector is movable relative to the lens to test the lens at plural focus positions, and plural detector output signals correspond to a feature of the target pattern at plural focus positions. A memory stores computer-executable process steps, and a processor executes the process steps stored in the memory so as to obtain a modulation transfer function value of the lens based on a position of the detector with respect to the lens, a rotational orientation of the lens about its optical axis, a color of the light and the lens distortion measured at a plurality of field positions.
Abstract:
An enhanced dynamic range wavefront sensing system includes a light source disposed on a first side of an optically transmissive device, a wavefront sensor disposed on a second side of an optically transmissive device, a relay imaging system disposed between the optically transmissive device and the wavefront sensor, and means for adjusting a distance between the light source and the optically transmissive device. Beneficially, the relay imaging system includes a range-limiting aperture to insure that the wavefront sensor never goes out of range so that a feedback system can be employed to move the light source one focal length away from the optically transmissive device.
Abstract:
An apparatus and method for enhancing an image relayed by a central beam of collimated light centered on the optical axis of a lens with an aperture area of A and focused on the focal plane of the lens. The apparatus having an aperture at least n times as big as A centered on the optical axis of the lens to admit a collimated relay beam including the central beam and a diverter means for separating the relay beam into n collimated facet beams equal to the central beam, but exclusive thereof, and redirecting them through the lens aperture to produce n additional images on the same focal plane. The apparatus also including a processor with a separate opto-electronic device for each image that converts it between electronic and photonic states, the electronic images being stored in the processor.
Abstract:
A process of measuring the radiant intensity profile of an effective source of a projection image system that has an effective source, an object plane, an imaging objective, an exit pupil, and an image plane. The improved process consists of selecting at least one field point and a corresponding aperture plane aperture and projecting a plurality of images of the selected field point through the corresponding selected aperture plane aperture at a plurality of various intensities of the effective source. By analyzing the recorded images of the effective source at various intensities it is possible to determine a radiant intensity profile of the image source at the selected field point.
Abstract:
A plurality of image sensors are tested concurrently by supplying light emitted by a light source to a first integrating sphere having an input port that receives the light emitted by the light source and having an output port providing output light. The output light of the first integrating sphere is spatially divided to provide a plurality of divided lights and the plurality of divided lights are supplied to a plurality of second integrating spheres respectively, each second integrating sphere having an input port that receives a divided light and an output port providing an output light. The output lights of the second integrating spheres are directed onto active regions of respective image sensors.
Abstract:
A shutter for use with a light source is provided. The shutter includes a first section that has an inner receiving surface for receiving at least part of a reflector liner. A second section is present and has an inner receiving surface for receiving at least part of the reflector liner. The second section is removably securable to the first section. The sections cooperate to provide adequate force to the reflector liner to cause the reflector liner to be retained on the inner receiving surfaces between engaging projections on the sections during attachment between the first and second sections. Detachment of the second section from the first section allows for the removal of the reflector liner from the receiving surfaces.