Abstract:
A reproducing device includes a reproducing unit configured to reproduce a contents sound, an output unit configured to output the contents sound which has been reproduced using the reproducing unit to a headphone, a talk detection unit configured to detect that a headphone fitter who fits the headphone talks with a person and an image normal position control unit configured to move the normal position of the image of the contents sound which has been reproduced using the reproducing unit to an arbitrary position when the talk detecting unit has detected that the headphone fitter has started talking with the person.
Abstract:
Provided is a headphone unit including a housing having a convex portion and accommodating a driver unit, a support in contact with part of the outer surface of the convex portion, and a frictional member in contact with the support and the outer surface of the convex portion. The frictional member generates greater friction against the convex portion than the friction between the support and the convex portion. The housing is swingably joined to the support.
Abstract:
An apparatus comprising at least one processor and at least one memory including computer program code the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform processing at least one control parameter dependent on at least one sensor input parameter, processing at least one audio signal dependent on the processed at least one control parameter, and outputting the processed at least one audio signal.
Abstract:
A set of headphones includes a connector with a first connection contact and a second connection contact as well as a loudspeaker, which is connected to the first connection contact in order to supply a loudspeaker signal. The set of headphones also includes a first and a second digital microphone, each of which is set up to generate a digital microphone signal, in particular with a binary bit stream. A multiplexer, which is coupled, at an output, to the second connection contact, is set up to generate a coded multiplex signal at the output on the basis of the microphone signals.
Abstract:
A method and system for a headset with major and minor adjustments, where the headset comprises a headband, a headband endcap at each end of the headband, a headband slide coupled to each headband endcap, ear cups operatively coupled to the headband slides, and a floating headband coupled to the headband endcaps. A major adjustment of the headset may include actuating a headband slide in a vertical direction. The ear cups may be operatively coupled to the headband slides utilizing ball detents that may hold the position of the ear cups with respect to the headband slides. The ball detents may comprise a portion of a ball on the headband slide and holes in the ear cup or may comprise a portion of a ball in the ear cup and holes in the headband slide. Each headband slide may be coupled to a headband endcap via a headband pivot.
Abstract:
The present invention discloses an earphone and a method for making an earphone to achieve automatic identification and switch control. The earphone comprises: a voltage-controlled switch, a switch button set, a microphone and more than two earphone remote control circuits, wherein different earphone remote control circuits correspond to different smartphone operating systems, respectively; the voltage-controlled switch is arranged between the switch button set, the microphone and the more than two earphone remote control circuits, and the voltage input terminal of the voltage-controlled switch is connected to the microphone-connected terminal of the earphone; the voltage-controlled switch identities the operating system of the smartphone that the earphone is plugged in according to the voltage of the microphone-connected terminal of the earphone, and then controls switch(es) in itself to switch to a corresponding earphone remote control circuit, to achieve the connection of the switch button set and the microphone to the corresponding earphone remote control circuit. The technical solution of the present invention makes one earphone generally applicable to the mobile phones of different operating systems.
Abstract:
An earphone wire control device, an earphone, a voice recording system and a voice recording system and method. When a switching unit turns on a first path, a microphone path is short-circuited, a first signal generating unit generates a recording start signal and cuts off the first path after generating the recording start signal so that the microphone path is turned on. When the switching unit turns on a second path, the microphone path is short-circuited, a second signal generating unit generates a recording stop signal and cuts off the second path after generating the recording stop signal.
Abstract:
A method in a first electronic mobile device for adapting audio performance parameters is provided. The first electronic mobile device performs an audio interaction with a second electronic device. The first electronic mobile electronic device is associated with at least one earpiece comprising at least one speaker and at least one microphone. The method comprises detecting an acoustic echo between the at least one speaker and the at least one microphone, determining, based on the detected acoustic echo, position of the at least one earpiece in relation to a user of the first electronic mobile device, and adapting audio performance parameters, based on the detected position of the earpiece, whereby less echo during the audio interaction is achieved in the second electronic device.
Abstract:
A bendable boom microphone. In one embodiment, the bendable boom microphone includes a bendable boom, a microphone, a sensor, and a controller. The bendable boom has a first end and a second end opposite the first end. The first end of the bendable boom is anchored. The microphone is positioned at the second end of the bendable boom. The sensor detects a bend angle of the bendable boom. The controller receives an indication of the bend angle from the sensor and operates the bendable boom microphone in one of a plurality of modes based on the bend angle.
Abstract:
Disclosed is an ear microphone which includes: a microphone for converting a voice signal provided from the external auditory meatus of a user to an electric signal; a speaker for converting the electric signal provided from an external device to the voice signal; and a soundproof member having a microphone receiving groove for fixing and supporting the microphone to the inside of the housing and a speaker receiving groove for fixing and supporting the speaker to the inside of the housing.