Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
An illuminating device (210) according to an embodiment of the invention included in an image reading apparatus (100) and an image forming apparatus (D) includes light source portions (211a1), (211b1), (211a2) and (211b2), light-guiding members (213a) and (213b) for illuminating an illumination target (G) from an elongated light emitting face (M) that extends in a longitudinal direction (Y), by guiding light from the light source portions, and holding members (216a) and (216b) for holding the light-guiding members. The holding members include holding portions (2161a) and (2161b) for removably holding the light-guiding members, and tilted portions (2162a) and (2162b) that reflect light emitted from the light emitting face (M), the tilted portions extending from a front end on the light emitting face (M) side of the holding portions, obliquely widening with increasing distance from the light-guiding members.
Abstract:
An image reading apparatus includes a casing, a light emitting section, a substrate, a support member, and a light guide. The light emitting section includes plural point light sources disposed in a row. The light emitting section is installed to a first face of the substrate. The support member is installed to the casing and supports a second face of the substrate at a projection portion where a position of the light emitting section is projected at the second face of the substrate. The light guide is installed to the casing adjacent to the light emitting section, and guides light from the light emitting section to a read-face.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
A scanning apparatus for preventing defocus aberration is provided. The scanning apparatus includes a flatbed scanning portion and a scanning module. The flatbed scanning portion includes a glass platform. The scanning module includes a scanning module case, a light source, multiple reflective mirrors, a lens, an optical sensing element, a printed circuit board and a metallic post. The metallic post is interconnected between the scanning module case and the printed circuit board. The printed circuit board is not in direct contact with the scanning module case so as to prevent defocus aberration resulting from thermal expansion.
Abstract:
A deflector deflects a light beam from a light source. A scanning optical system focuses the light beam deflected by the deflector. An image carrying member is located at a focal position of the light beam and includes a surface that is scanned in a main scanning direction with the light beam focused by the scanning optical system. One pixel of an image is formed by a plurality of light spots having different focal positions in at least a sub-scanning direction. At least one light spot from among the light spots is formed on the surface of the image carrying member at a scan timing different from those of rest of the light spots.
Abstract:
An LED module is mounted on a case frame by fitting three pins formed at a concave portion of the case frame, into holes in the LED module corresponding to the pins. A light-guide plate is fitted into the case frame formed integrally with a bottom cover in a descending direction. The light-guide plate is fixed by a hook provided for the case frame. A space between the light-guide plate and the LED module is prevented by pressing the light-guide plate to the LED module with a pressing spring. Since the light-guide plate is fitted into the case frame in the descending direction and a light scattering sheet is adhered to an outer end surface of the case frame in the descending direction, it is not necessary to reverse the worked product and so the number and time of working processes can be saved.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
The electronic imaging apparatus comprises a first optical element A having a flat surface and a surface with refracting power, chemical substance which enables to change light transmittance by chemical change according to electric quantity, a second optical element having a transparent surface and a flat surface, and an optical system having an optical component arranged so as to sandwich the chemical substance by a surface of the first optical element and a surface of the second optical element. Here the spectrum transmittance at whole range of τmin≦τ520≦τmax satisfies the following conditions when the whole transmittance of the first optical element, the chemical substance and the second optical element at the wavelength of 520 nm is τ520, 0.70
Abstract:
An LED module is mounted on a case frame by fitting three pins formed at a concave portion of the case frame, into holes in the LED module corresponding to the pins. A light-guide plate is fitted into the case frame formed integrally with a bottom cover in a descending direction. The light-guide plate is fixed by a hook provided for the case frame. A space between the light-guide plate and the LED module is prevented by pressing the light-guide plate to the LED module with a pressing spring. Since the light-guide plate is fitted into the case frame in the descending direction and a light scattering sheet is adhered to an outer end surface of the case frame in the descending direction, it is not necessary to reverse the worked product and so the number and time of working processes can be saved.