Abstract:
There is provided an image forming apparatus that is capable of securing required printing quality by properly correcting a main scanning scale. In a pixel division modulating process, for each of one or more correction points (at l-th, m-th, and n-th pixels) on each of lines along which scanning is carried out on a photosensitive drum 11 by laser light, the final bit data of pixel-division-modulated pixel data of a pixel immediately preceding each correction point is added to the pixel data of a pixel located at the correction point as the leading bit data of the pixel-division-modulated pixel data of this pixel. The same processing as above is sequentially performed on pixel data of pixels located subsequently to the correction point to sequentially shift predetermined bit data of pixel data of pixels to pixel data of the respective following pixels, to thereby generate pixel data of a new pixel. The generated pixel data of the new pixel is outputted in synchronism with an image clock of a fixed frequency.
Abstract:
The image recording method and apparatus deflect light from a group of two-dimensionally disposed light source elements to move an image formed on a recording medium in accordance with a movement of the recording medium, or shift modulation data of the group of two-dimensionally disposed light source elements in a first moving direction of the recording medium on the group of two-dimensionally disposed light source elements in synchronism with the movement of the recording medium, and thereby have the image remain stationary relatively to the recording medium in the main scanning direction, as well as shift sequentially modulation data of the group of two-dimensionally disposed light source elements in a direction opposite to a second moving direction of the optical system in synchronism with a movement of the optical system in the auxiliary scanning direction, and thereby having the image also remain stationary relatively to the recording medium in the auxiliary scanning direction.
Abstract:
A method for calibrating a VCO within a phase locked loop circuit is disclosed. First, a DAC output voltage is set to its minimum, and a counter M is adjusted until a comparator is its threshold voltage. Next, the DAC is set to another voltage, and counter M is again adjusted to the comparator threshold. This process is repeated for as many steps as desired. When the phase locked loop circuit requests an instantaneous frequency, an interpolation of the requested frequency against the curve created by the above-described method gives the value required by the DAC.
Abstract:
A pixel clock generating apparatus comprises a data offset circuit and a pixel generator. The data offset circuit defines multiple data blocks, each data block consisting of a predetermined number of successive clocks, and produces phase data for each data block. The phase data represents an amount and a direction of phase shift to be carried out for a certain clock in each data block. The pixel generator receives the phase data from the data offset circuit and generates a phase-shifted pixel clock a predetermined number of times in each data block based on the phase data.
Abstract:
The invention concerns a clock-generating circuit, which generates dot clock pulses for driving a light-emitting element employed in an optical-writing section of an image-forming apparatus and has a function of canceling fnull property errors caused by a fnull lens employed in the image-forming apparatus. The clock-generating circuit includes a digital-delay dot clock adjusting section to adjust timings of rising-edges or falling-edges of the dot clock pulses generated by changing a selection for a plurality of delayed-clock pulses, which are generated by delaying clock-pulses, outputted from a reference oscillator, in slightly different delay times; and a controlling section to control a selecting operation for the plurality of delayed clock pulses, performed in the digital-delay dot clock adjusting section, so as to compensate for fnull property errors caused by the fnull lens employed in the optical-writing section.
Abstract:
An image is accurately recorded by a light beam on a PS plate wound on a drum which is rotating at a constant speed. A rotary encoder detects information of a recording position in a main scanning direction by the light beam that is emitted from an optical unit to the PS plate. Based on the detected information, a PLL circuit of a recording synchronizing signal generating unit generates an original clock. Pulses of the original clock are counted by a decimating counter, which outputs a decimating instruction to decimate a pulse from the original clock each time the count reaches a preset count. Based on the decimating instruction, a pulse is decimated from the original clock, and a decimated clock is frequency-divided at a fixed frequency-dividing ratio by a frequency divider, which outputs a pixel clock for recording the image. Since the frequency of the pixel clock is varied by decimating the original clock based on the preset count, the image can accurately be recorded on the PS plate by determining in advance the preset count depending on the positional relationship between the PS plate and the optical unit.
Abstract:
The present invention relates to a method for adjusting a photodetector array, and a beam-splitting and detector structure for a line scan camera, which structure comprises a photodetector array which is protected by a casing (10) from at least the back, and adjusted to the focus plan of an objective and glued to the exit surface focus plane of an objective and glued to the exit surface of the beam-splitting prism (2) by means of a support and adjusting structure. According to the invention, the supporting and adjusting structure comprising a glue layer (6) arranged between edges (19) surrounding the photodetector array (1) in the casing (10) and the exit surface (4) of the beam-splitting prism.
Abstract:
A variable resolution transition placement circuit in an electrophotographic imaging device allows transitions to be placed within a stream of video data so that the pixel resolution achieved over a scan line is adjustable on a pixel by pixel basis using a system clock. Pixel data defines transition positions relative to a synthesized video clock defining pixel time periods. A converter converts positions of the transitions relative to the synthesized video clock to positions relative to the system clock using a value provided by a synthesized video clock to system clock transform generator. The value can change between synthesized video clock cycles to change the pixel resolution. A synthesized video generator generates values of a synthesized video clock relative to the system clock. Offset values generated from values of the synthesized video clock, the positions of the transitions relative to the system clock, and phase difference values from a phase measuring device are combined to determine the positions at which the transitions will be generated relative to the system clock. The values representing the positions at which the transitions will be generated are stored in a transition queue. The integer portions of these values are decremented on each system clock cycle. When the integer portions of these values reach zero, the fractional portion of these values (representing the position of transitions within system clock clock cycles) are provided to transition generation logic to generate transitions at the specified positions in system clock cycles.
Abstract:
The present invention is made to provide a fixing structure for solid state image forming device made inexpensively and easily by simple caulking adhering method with keeping high positional accuracy, by which it is achieved that the solid state image forming device can be separated easily from the image focusing lens holding member when the image focusing lens holding member has a defect, In the fixing structure of present invention, an image focusing lens holding member 3 and an intermediate holding member 6 are adhered by caulking adhering method. Because one or more projecting portion 3c for painting adhesive material formed on the image focusing lens holding member 3, have smaller area than that of bottom surface 6a of the intermediate holding member 6, a space 10 is formed between the image focusing lens holding member 3 and the intermediate holding member 6, the solid state image forming device 1 fixed on the intermediate holding member 6 can be easily separated from the image focusing lens holding member 3 by inserting and turning a tool 11 whose width of top portion is smaller than the width of space 10.
Abstract:
An image carrier is scanned with a laser beam emitted by a semiconductor laser. Part of the laser beam is focused on a photoelectric converter immediately before it scans the image carrier. The laser beam position is adjusted in a direction perpendicular to the laser beam scanning direction in accordance with the output from the photoelectric converter.