Abstract:
Disclosed is a display apparatus with a protection plate including a display panel including a first transparent substrate, an adhesion layer arranged so as to overlap with an entire screen area of the display panel, the protection plate fixed to the display panel by the adhesion layer in a state where the adhesion layer intervening between the protection plate and the first transparent substrate and a cured bonding layer which directly contacts the display panel and the protection plate and which is provided on a circumference of the adhesion layer, and at least one aperture making a region in one side on which the screen area of the display panel is arranged with respect to the bonding layer and a region in the other side opposite to the one side with respect to the bonding layer communicate with each other is provided in the bonding layer.
Abstract:
A method for manufacturing the following device is provided: an electro-optical device which includes a pair of substrates holding a display material having optical properties varied by electric stimulation and which has a curved shape. The method includes covering the front and rear faces of a display with a pair of protective films and then bonding end portions of the protective films to each other with an adhesive containing a thermoplastic resin, the end portions being located outside the display; heating the bonded end portions to melt the adhesive and then bending the display depending on applications; and solidifying the melted adhesive by cooling to allow the protective films to hold the display bent.
Abstract:
An image display device has an image display part and a protective part on the image display part. The image display device suppresses image unevenness and cured resin peeling caused by internal stress generated due to curing shrinkage of a cured resin between the protective part and the image display part or external stress applied on the image display part due to warping of the protective part. A cured resin layer is arranged between the image display part and the protective part. The cured resin layer has a light transmittance in the visible region of 90% or more, an elongation ratio of 700% or more at 25° C. and 400% or more at 80° C., and an adhesive force with respect to the protective part of 0.4 N/cm or more at 25° C. and 0.3 N/cm or more at 80° C.
Abstract:
A pixel structure including a first active device, a second active device, a first pixel electrode electrically connecting the first active device, a second pixel electrode electrically connecting the second active device and a first capacitance lower electrode is provided. Both the first active device and the second active device electrically connect a scan line and a data line. The first pixel electrode has a first interlacing pattern and first stripe patterns connected thereto. The second pixel electrode has a second interlacing pattern and second stripe patterns connected thereto. The first capacitance lower electrode located under the first interlacing pattern has a first region and second regions. The first pixel electrode substantially shields the first region but does not shield the second regions. An area ratio of the first region to the second regions is about 10:1˜300:1.
Abstract:
The present invention relates to an optical sheet for a backlight unit of a TFT-LCD and a TFT-LCD including the same. The optical sheet of the present invention includes a transparent base sheet, and a light diffusion layer in which a diffusion pattern comprised of a plurality of protrusions is formed on the transparent base sheet. The diffusion pattern satisfies an aspect ratio of 0.8 or more, the aspect ratio being a ratio of a radius (l) of a unit body portion of the protrusion, which is formed on the transparent base sheet, to a thickness (d) of the protrusion.
Abstract:
A light control device according to the present invention comprises a plurality of optical elements between two transparent plates in each of which a pair of transparent substrates having taper-shaped side faces with transparent electrodes are located so as to face each other, and a light control layer capable of changing the light transmitting state by electrically controlling the pair of transparent electrodes is disposed between the pair of transparent electrodes, and further, a transparent solid layer is filled in a space formed in the gap between the two transparent plates.
Abstract:
A panel is formed by laminating a pair of substrates with each other. A first seal material is provided on one of the substrates and a second seal material is provided to completely surround the first seal material. The pair of substrates is laminated with each other in a state where a cell space is formed therebetween and the first and second seal materials are sandwiched between the substrates. An inner space of the second seal material containing the cell space is depressurized through an opening provided outside the first seal material and inside the second seal material. A portion where the second seal material is provided is removed so that the cell space formed by the first seal material remains.
Abstract:
Disclosed is a method for forming an alignment layer of an LCD capable of preventing Mura defects when the alignment layer is formed through an LC one drop fill process. The method includes the steps of coating a mixing solution including a solvent and organic polymer materials consisting of polyimide and polyamic acid on the substrates, pre-curing the mixing solution twice with mutually different temperatures, thereby volatizing the solvent and obtaining stable phase-separation between the organic polymer materials and the solvent, and completely curing the pre-cured mixing solution at a temperature of about 180 to 240° C. A primary pre-curing process is performed at a temperature less than 50° C. under vacuum pressure of about −35 to −50 psi, and a secondary pre-curing process is performed at a temperature within a range of about 50 to 75° C. under the same vacuum pressure.
Abstract:
In manufacturing a device using an organic TFT, it is essential to develop an element in which a channel length is short or a channel width is narrow to downsize a device. Based on the above, it is an object of the present invention to provide an organic TFT in which characteristic is improved. In view of the foregoing problem, one feature of the present invention is that an element is baked after an organic semiconductor film is deposited. More specifically, one feature of the present invention is that the organic semiconductor film is heated under atmospheric pressure or under reduced pressure. Moreover, a baking process may be carried out in an inert gas atmosphere.
Abstract:
A display element comprising a pair of substrates; a display layer provided between the substrates for performing a display operation; and a looped seal member provided between the substrates for enclosing the display layer between the substrates; the substrates having different linear expansion coefficients; the looped seal member comprising a plurality of resin layers stacked from an inner side to an outer side, at least one of the resin layers being composed of a thermosetting resin, the rest of the resin layers being composed of a UV curable resin.