Abstract:
This invention relates to portable heating systems that utilize a portable fuel source. Portable heating systems of the invention generally include a regulator that is configured to vaporize fuel released from a cartridge and to transfer the vaporized fuel to a burner for ignition.
Abstract:
For a temperature control unit for gaseous or liquid medium with a highly dynamic temperature regulation of the medium, the temperature control unit is designed with a base body and a cooling body between which are arranged multiple thermoelectric modules, and with a media line in the base body, wherein the media line is arranged in the base body in the form of a single-start spiral from the outside to the inside, and it is provided that the multiple thermoelectric modules are arranged in a plurality of rows on the base body, wherein the module heating power of a thermoelectric module situated further toward the outside radially is greater than the module heating power of a thermoelectric module situated further toward the inside radially.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
Abstract:
A flue gas heat recovery device is described. The device includes a packing tower. The packing tower is adapted to receive a flue gas stream. The packing tower also contains at least one water inlet, a water collection reservoir and a packing tray positioned between the inlet and reservoir. An air induction assembly may be attached to the packing tower or the inlet. A fuel gas line is in thermal communication with the reservoir. The fuel gas line has two ends a first end in close spatial relationship to a distal end of said reservoir, and a second end in close spatial relationship to a fuel output. Finally, a fluid conduit connects the second end of the fuel gas line and the water inlet.
Abstract:
Methods are disclosed for generating electrical power from a compound comprising carbon, oxygen, and hydrogen. Water is combined with the compound to produce a wet form of the compound. The wet form of the compound is transferred into a reaction processing chamber. The wet form of the compound is heated within the reaction chamber such that elements of the compound dissociate and react, with one reaction product comprising hydrogen gas. The hydrogen gas is processed to generate electrical power.
Abstract:
A fuel delivery system for a combustion turbine engine, comprising: a fuel line having a fuel compressor and parallel branches downstream of the fuel compressor: a cold branch that includes an after-cooler; and a hot branch that bypasses the after-cooler; a rapid heating value meter configured to measure the heating value of the fuel from the fuel source and transmit heating value data relating to the measurements; means for controlling the amount of fuel being directed through the cold branch and the amount of fuel being directed through the hot branch; and a fuel-mixing junction at which the cold branch and the hot branch converge; wherein the fuel-mixing junction resides in close proximity to a combustor gas control valve.
Abstract:
Method and system for blending biogas with conventional fuel in which the fuel blend is automatically adjusted for lower biogas flows and methane concentrations by introducing higher concentrations of conventional fuels. The system is able to automatically adjust the fuel blend, thereby eliminating the requirement for manual intervention, and producing a variable blended biogas that can be utilized within existing natural-gas fired combustion units such as boilers, furnaces, heaters, etc., as well as enabling automatic adjustment and operation, maximum usage of biogas, and integration with combustion unit controls. Using all available biogas to provide energy also minimizes the need for flaring unused biogas.
Abstract:
An apparatus and method are provided for a gas distribution system that allows for the rapid displacement of an extraneous gas in the distribution system by a primary gas. The gas distribution system utilizes a gas accumulator to aid in the rapid displacement of the extraneous gas. In one embodiment a flare pilot system uses the inventive distribution system to allow for the rapid purge of air from the flare pilot system by a fuel.
Abstract:
The present invention provides fuel saving systems. Fuel consumption can be reduced by 5% to 40% or more by pre-combustion heating the fuels. The heat exhaust of a combustion chamber can be used to heat a heat transfer fluid, which exchanges heat with the incoming fuel stream.
Abstract:
A system and method for providing fuel mixes a first fuel with a second fuel at a mixing point to create a mixed fuel having a first calorie content. A control valve is located upstream of the mixing point. A process system downstream of the mixing point processes the mixed fuel to create a processed mixed fuel having a second calorie content. A first control signal is reflective of the first calorie content of the mixed fuel. A second control signal is reflective of the second calorie content of the processed mixed fuel. A third control signal is reflective of the operating level of the combustion engine. A controller connected to the control valve operates the control valve based on the first, second, and third control signals.