Abstract:
A linear conveyor is provided with a linear motor stator including electromagnets and operable to individually undergo electric current supply control with respect to each zone; a conveyor carriage provided with a linear motor rotor and a unique information storing device; motor control devices configured to perform electric current supply control for the electromagnets with respect to each zone; and a reading device configured to read position correction data of the conveyor carriage stored in the unique information storing device. Each of the motor control devices is configured to correct a target stop position of the conveyor carriage, with use of the position correction data read by the reading device for performing electric current supply control based on the corrected target stop position.
Abstract:
A material transfer device is configured for transferring a number of molded products. The material transfer device includes a control box and a transfer mechanism. The transfer mechanism includes a receiving chamber, a driving device, and a supporting structure. The receiving chamber is located on the control box. The driving device is located on a side surface of the receiving chamber and extends into the receiving chamber. The supporting structure includes a holder, a rotating portion, and a number of supporting plates. The holder is located on the driving device to be driven thereby to move along the receiving chamber. The rotating portion is fixed on the holder. The supporting plates are fixed on the rotating portion. The rotating portion drives the supporting plates to rotate.
Abstract:
A linear conveyor is provided with a linear motor stator including electromagnets and operable to individually undergo electric current supply control with respect to each zone; a conveyor carriage provided with a linear motor rotor and a unique information storing device; motor control devices configured to perform electric current supply control for the electromagnets with respect to each zone; and a reading device configured to read position correction data of the conveyor carriage stored in the unique information storing device. Each of the motor control devices is configured to correct a target stop position of the conveyor carriage, with use of the position correction data read by the reading device for performing electric current supply control based on the corrected target stop position.
Abstract:
A slip conveyor (50) delivers product to a further conveyor (50) that in turn delivers product to weighing machines (53) that would be typically associated with a packaging machine. The slip conveyor (50) includes a delivery portion (57) provided with a plurality of separated fingers (59). Slots (58) between the fingers (59) extend longitudinally in the direction (52). Smaller product, such as smaller potato crisps, are located adjacent longitudinally extending edges (63) of the conveyor (10), the smaller product passes through the gaps (26a) that provides for delivery of product to the associated conveyor (62).
Abstract:
A reciprocating slat conveyor includes a plurality of laterally and substantially parallel longitudinal trough-like subdecks and a plurality of longitudinal slats adjacent to and parallel to each other. The slats are in a sliding relationship with a pair of adjacent subdecks and cover the longitudinal space between the pair of adjacent subdecks. The subdecks longitudinally support two adjacent slats at or near a slat longitudinal side edge. The subdecks conduct the movement of the slats, preferably without distinct bearing elements therebetween. Some preferred embodiments include raised double-seal system.
Abstract:
An article carrying apparatus for carrying, in a carrying direction, an article placed on a carry face of a carry section making use of a vibration, includes: the carry section provided with the carry face of which the carrying direction is linearly restricted; and a vibration applying mechanism that applies the vibration to the carry section. The vibration applying mechanism includes: a first cam mechanism for converting a motion that has been input from a predetermined drive source into a reciprocating linear motion in a first direction that has at least a component in the carrying direction, and for transmitting the reciprocating linear motion to the carry section; and a second cam mechanism for converting a motion that has been input from a predetermined drive source into a reciprocating linear motion in a second direction that has at least a component in a normal direction of the carry face, and for transmitting the reciprocating linear motion to the carry section.
Abstract:
A pneumatically actuated, beltless conveyor assembly includes a housing, a drive system supported by the housing and at least one transport tray supported by the housing and operatively connected to the drive system. The drive system includes a seal-less pneumatic engine having at least one pair of opposed, pneumatic drive bellow assemblies. One of the drive bellow assemblies acts to drive the transport tray in one direction at a first predetermined speed to advance materials supported on the transport tray in the direction of the length of the tray. The other of the pair of drive bellow assemblies acts to drive the transport tray in a second direction opposite to the first direction and at a second, predetermined speed that is different from the first predetermined speed such that the transport tray moves relative to the material supported thereon.
Abstract:
A dosing device of a pulverulent material uses an oscillating drive mechanism with straight to-and-fro movement to extract and dose a pulverulent material contained in a hopper with a calibrated outlet aperture, and then to transfer the extracted mass to a removal point. The hopper can be fixed or movable. To measure the mass flowrate extracted from the aperture, the hopper is connected to the mechanism by a flexible blade and bears on a table equipped with a weighing cell formed by a weight sensor. The weight variation indicates the mass flowrate, which can be adjusted by acting on the oscillation frequency of the mechanism, or on the opening of the outlet aperture.
Abstract:
A pneumatically actuated, beltless conveyor assembly includes a housing, a drive system supported by the housing and at least one transport tray supported by the housing and operatively connected to the drive system. The drive system includes a seal-less pneumatic engine having at least one pair of opposed, pneumatic drive bellow assemblies. One of the drive bellow assemblies acts to drive the transport tray in one direction at a first predetermined speed to advance materials supported on the transport tray in the direction of the length of the tray. The other of the pair of drive bellow assemblies acts to drive the transport tray in a second direction opposite to the first direction and at a second, predetermined speed that is different from the first predetermined speed such that the transport tray moves relative to the material supported thereon.
Abstract:
There is provided an article conveyor device which may effectively convey an article by a cam drive. The article conveyor device comprises a reciprocating portion which reciprocates by being driven by a cam, and an article conveyor portion for conveying an article, having an inclination of a predetermined angle in respect to a reciprocating direction of the reciprocating portion in a vertical plane, and cooperating with the reciprocating portion; and conveys an article along the article conveyor portion by the reciprocating motion of the reciprocating portion.