Abstract:
An air suspension system for a load carrying vehicle has multiple air bags associated with selected vehicle wheels to at least assist supporting the load and to control relative movement between the respective wheel and a supporting frame structure of the vehicle. A high flow-rate air tube connected to at least one air bag receives air from the connected air bag when air pressure in the air bag increases above that in the air tube. Air flows from the high flow rate air tube to a connected air bag when the air pressure in the air tube is above that of the air bag. The flow rate of air from the air tube to the air bag is controlled by the structure of the fittings between the respective air bags and the high flow-rate air tubes. A height valve maintains a predetermined pressure in the air bags when the vehicle is at rest.
Abstract:
A pivot assembly for a tandem suspension is provided which includes a balancer and an elastomeric assembly operable to allow the balancer to rotate about a vehicle chassis. In addition, an elastomeric assembly for a suspension system is provided which includes an elastomeric element provided with a slot for allowing a deformation in response to a tension load imparted by a balancer, and a groove for preventing bulging in response to a compression load imparted by the balancer. A balancer for a vehicle suspension is also provided which includes first and second plates, an open area formed between the plates, an engaging member provided within the open area and first and second pins which define an axis of rotation about which the balancer is rotatable. A kit for the pivot assembly is also provided.
Abstract:
Provided is an offset tandem axle assembly system with a pair of walking beams mounted to suspension hangers so that about sixty percent of the overall beam length is oriented between the hanger pivot and a non-driven axle and about forty percent of the overall beam length is oriented between the hanger pivot and the driven axle. A torque rod pivotally connects the non-driven axle to each suspension beam. A single resilient air spring mounted between the non-driven axle and each suspension beam dampens loading and rebound for both the driven and non-driven axles. The non-driven axle can be either a tag axle or a push axle and may be self steering.
Abstract:
An air suspension system for a multi-axle vehicle has an air bag system including at least one air bag operatively associated with the vehicle wheels on selected wheel and axle sets to control relative movement between each of the selected wheels and a supporting frame structure of the vehicle. The system has an air-flow control arrangement to control the flow of air into each air bag to thereby control the relative movement of the wheels and vehicle frame structure. A pressurising arrangement is provided to maintain a selected, predetermined pressure in the air bag system when the vehicle is at rest to thereby maintain a desired vehicle height. The pressurising arrangement includes a valve to admit pressurised air to or exhaust air from the air bag system to maintain the predetermined vehicle height. The valve is actuated by a link associated with a rocker member connected to spaced axles of the vehicle.
Abstract:
An equalized suspension system for a vehicle includes a first trailing arm, a second trailing arm, first and second wheels, and a cushion. The first trailing arm has a lower end pivotally secured to the first wheel, and an upper end pivotally secured to the frame. The second trailing arm has a lower end pivotally secured to the second wheel, a free upper end, and an intermediate portion pivotally secured to the frame. The cushion extends between the lower end of the first trailing arm and the free, upper end of the second trailing arm and serves to transfer and equalize pressures between the first and second wheels. When the first wheel engages an obstacle and moves in a first direction, the cushion forces the second wheel, via the second trailing arm, in a second direction.
Abstract:
A suspension apparatus of a multi-axle vehicle capable of realizing high traveling stability is provided. For this purpose, the suspension apparatus forms a quadric link structure (31) by a vehicle body (9), a front link (21) with an upper end portion being connected to the vehicle body with a pin and a lower end portion being in a vicinity of a front axle, a rear link (22) with an upper end portion being connected to the vehicle body with a pin and a lower end portion located in a vicinity of a rear axle, and a connecting link (1) for connecting portions in vicinities of respective lower end portions of the front and rear links, and a side length at a side of the connecting link is made shorter than a side length at a vehicle body side.
Abstract:
An air suspension system for a load carrying vehicle has multiple air bags associated with selected vehicle wheels to at least assist supporting the load and to control relative movement between the respective wheel and a supporting frame structure of the vehicle. A high flow-rate air tube connected to at least one air bag receives air from the connected air bag when air pressure in the air bag increases above that in the air tube. Air flows from the high flow rate air tube to a connected air bag when the air pressure in the air tube is above that of the air bag. The flow rate of air from the air tube to the air bag is controlled by the structure of the fittings between the respective air bags and the high flow-rate air tubes. A height valve maintains a predetermined pressure in the air bags when the vehicle is at rest.
Abstract:
A suspension device in a crawler vehicle has a vehicle body, a pair of parallel spaced swing beams mounted on a rear portion of the vehicle body by a suspension for angular movement about a first axis located substantially longitudinally centrally thereof, a rear idle wheel rotatably supported on a front portion of each of the swing beams for rotation about a second axis, a rear drive wheel rotatably supported on a rear portion of each of the swing beams for rotation about a third axis, a crawler belt trained around the rear idle wheel and the rear drive wheel, and a front wheel rotatably mounted on a front portion of the vehicle body. The distance from the second axis to the first axis is greater than the distance from the first axis to the third axis. The second axis is positioned on a front end of each of the swing beams, and the third axis is positioned between the first axis and a rear end of each of the swing beams. Preferably, the distance from the second axis to the first axis and the distance from the first axis to the third axis have a ratio of about 2:1.
Abstract:
A vehicle suspension system having a pair of hanger brackets, with one control arm and one torque arm pivotally mounted on one end to each hanger bracket. Each control arm and each torque arm is pivotally attached to one of a pair of axle seats at another end. One end of a stabilizer bar is mounted to a control arm to increase the suspensions roll stability, and resistance to lateral deflection. The pivotal connections on either end of the control arm include a flexible bushing formed with a hole, and a pivot pin extending through the hole. A lift mechanism includes a compression spring acting against a force plate to move a pair of tire-wheel assemblies between ground engaging and non-ground engaging positions through an interconnected lift bar. The lift mechanism will raise the tire-wheel assembly between a non-ground engaging position, a first ground engaging position, and a second ground engaging position for use in roadrailer applications.
Abstract:
A tandem axle suspension system distributes a vehicle load asymmetrically to a drive and drag axle of a vehicle, the system comprises a compensator member that is pivotally connected between a front axle seat supporting the vehicle drive axle and a hanger member suspended beneath the vehicle chassis, and a torque beam member that is pivotally connected between the compensator member and a rear axle seat supporting the vehicle drag axle.