Abstract:
An image processing device for receiving input image data in which multiple images displayed in mutually differing directions from a display are combined includes: a crosstalk correction processor for performing a crosstalk correction; and a response speed improvement correction processor for performing a response speed improvement correction. The crosstalk correction processor has an optical crosstalk correction processor for performing an optical crosstalk correction, and an electrical crosstalk correction processor for performing an electrical crosstalk correction. The optical crosstalk correction processor performs the correction based on the input image data and outputs optical crosstalk correction processed image data.
Abstract:
A vehicle control system includes: an engine; a power transmission device that transmits power from the engine to drive wheel; a mechanical pump that supplies oil for operating the power transmission device to the power transmission device by driving of the engine; and an electric pump that supplies the oil to the power transmission device by driving of a motor. The vehicle control system is capable of executing stopped economy running control for stopping the engine when a vehicle is stopped, and travel economy running control for stopping the engine while the vehicle is traveling. During the execution of the stopped economy running control, learning control is executed whereby a control value for controlling the oil pressure is updated such that the actual oil pressure generated by the electric pump is converged to a target value. During the execution of the travel economy running control the learning control is prohibited.
Abstract:
An interpolation computation unit (3B) treats, as positions of interest, positions where pixels within a high-resolution image (D30) occupy when the high-resolution image (D30) is superimposed on a low-resolution image (D01), and for each position of interest, obtains a pixel value for a pixel assumed to exist at the position of interest by performing an interpolation computation using pixel values of a plurality of pixels within the low-resolution image (D01). An interpolation coefficient calculation unit (3A) obtains interpolation coefficients (D3A) having values that increase with increasing strength of correlation of the pixels in the plurality of pixels in the low-resolution image with the pixel of interest, and outputs the interpolation coefficients to the interpolation computation unit (3B). Angles of edges and shapes of edges are not classified into any predetermined patterns; therefore, it is possible to perform suitable interpolation computations regardless of edge shape.
Abstract:
A vehicle control system includes: an engine; a power transmission device that transmits power from the engine to drive wheels; a mechanical pump that supplies oil for operating the power transmission device to the power transmission device by driving of the engine; and an electric pump that supplies the oil to the power transmission device by driving of a motor. The vehicle control system is capable of executing stopped economy running control for stopping the engine when a vehicle is stopped, and travel economy running control for stopping the engine while the vehicle is traveling. During the execution of the stopped economy running control, learning control is executed whereby a control value for controlling the oil pressure is updated such that the actual oil pressure generated by the electric pump is converged to a target value. During the execution of the travel economy running control the learning control is prohibited.
Abstract:
A first intermediate image generating means (1) generates an intermediate image (D1) by extracting a component of an input image (DIN) in a particular frequency band; a second intermediate image generating means (2) generates an intermediate image (D2) having a frequency component higher than intermediate image (D1); an intermediate image processing means (3M) generates an intermediate image (D3M) by suppressing low-level noise included in intermediate image (D1); an intermediate image processing means (3H) generates an intermediate image (D3H) by suppressing low-level noise included in intermediate image (D2); and an adding means (4) adds the input image (DIN) and intermediate image (D3M) and intermediate image (D3H) together to obtain a final output image (DOUT). Even if the input image includes a fold-over component on the high-frequency side or does not include an adequate high-frequency component, an enhanced image can be obtained without enhancing noise.
Abstract:
In a friction stir welding apparatus, workpiece fixing surface plates (3a, 3b) are installed on a framework (1). In addition, a welding apparatus main body (8) including a bobbin tool (5) having a probe (5a) protruding upward from a gap (4), a spindle (6) configured to attach the bobbin tool (5) to an upper end section thereof, and a spindle driving apparatus (7) configured to pivot the spindle (6) is movably installed at the framework (1) in a longitudinal direction of the gap (4) via linear guide mechanisms (9) installed at both sides of the welding apparatus main body (8). Further, a moving apparatus (10) is installed to move the welding apparatus main body (8) in the longitudinal direction of the gap (4). According to the friction stir welding apparatus, since the welding apparatus main body (8) is supported by the framework (1) via both of the linear guide mechanisms (9), a large welding reaction force can be sufficiently received. In addition, since workpieces (2a, 2b) are welded from a lower side, the workpiece size is not limited by a size of the apparatus.
Abstract:
A slide switch installed in a buckle apparatus includes a body 20, a slider 30 held slidably in the body 20, the slider 30 sliding when pressed by a movable part of the buckle apparatus, fixed contacts 41 to 43 placed in a direction in which the slider slides, on a surface of the body 20 that faces the slider 30, a movable piece 44 sliding on the surface of the body 20 on which the fixed contacts 41 to 43 are placed. The slider 30 has a size that obscures the fixed contacts 41 to 43 in the entire range in which the slider 30 slides. The fixed contacts 41 to 43 are unlikely to be affected by foreign matter etc. and adherence of foreign matter that degrades performance can be prevented.
Abstract:
An image interpolation device comprises a data storage unit (2) for storing the data in the neighborhood of a missing pixel, a filter interpolation unit (3) for performing a multiply-add computation on the data output from the data storage unit, a limiter processing unit (4) for limiting the data output from the filter interpolation unit to within the range of the data output from the data storage unit, and an interpolation data insertion unit (5) for interpolating the data output from the limiter processing unit into a position corresponding to the missing pixel in the data output from the data storage unit. The image interpolation device is capable of increasing the interpolation accuracy of missing pixels, especially in the interpolation of scanned document data including periodic data.
Abstract:
A communication control function is implemented with limited hardware resources without hampering the extensibility and degrading the processing performance. In an electric control unit coupled to a network bus comprises a reconfiguration module using for processing message received from the network bus. The reconfiguration module is made for configuring the processing circuit in accordance with the message transferred on the network bus to be processed.