Abstract:
An apparatus and method for encoding and decoding additional information into a digital information in an integral manner. More particularly, the invention relates to a method and device for data protection.
Abstract:
Multiple transform utilization and applications for secure digital watermarking. In one embodiment of the present invention, digital blocks in digital information to be protected are transformed into the frequency domain using a fast Fourier transform. A plurality of frequencies and associated amplitudes are identified for each of the transformed digital blocks and a subset of the identified amplitudes is selected for each of the digital blocks using a primary mask from a key. Message information is selected from a message using a transformation table generated with a convolution mask. The chosen message information is encoded into each of the transformed digital blocks by altering the selected amplitudes based on the selected message information.
Abstract:
This invention relates to security for data objects; more particularly, the present invention relates to improved security based on subliminal and supraliminal channels for data objects. In another embodiment, a method of protecting a data object comprises: steganographically encoding a subset of candidate bits in a digitized sample stream; perceptibly manipulating data in the digitized sample stream; and combining the imperceptible and perceptible data changes to create a secure/unique digital sample stream. In yet another embodiment, a method for securing a data signal comprises: preanalyzing said data signal for candidate watermark/signature bits; steganographically encoding independent data into the data signal into a subset of the candidate watermark bits, at least one time; and encoding the data signal subsequently with a perceptible technique.
Abstract:
Disclosed herein are methods and systems for transmitting streams of data. The present invention also relates to generating packet watermarks and packet watermark keys. The present invention also relates to a computerized system for packaging data for transmission to a user. The system may utilize computer code to generate a bandwidth rights certificate that may include: at least one cryptographic credential; routing information for the transmission; and, optionally, a digital signature of a certificate owner; a unique identification code of a certificate owner; a certificate validity period; and pricing information for bandwidth use. The present invention also relates to an electronic method and system for purchasing good and services by establishing an account whereby a customer is credited with a predetermined amount of bandwidth usage, and assesses charges against the account in an amount of bandwidth usage corresponding to the agreed upon purchase value for the selected item.
Abstract:
Disclosed herein are methods and systems for transmitting streams of data. The present invention also relates to generating packet watermarks and packet watermark keys. The present invention also relates to a computerized system for packaging data for transmission to a user. The system may utilize computer code to generate a bandwidth rights certificate that may include: at least one cryptographic credential; routing information for the transmission; and, optionally, a digital signature of a certificate owner; a unique identification code of a certificate owner; a certificate validity period; and pricing information for use of bandwidth. The present invention also relates to an electronic method and system for purchasing good and services by establishing an account whereby a customer is credited with a predetermined amount of bandwidth usage, and then charges are assessed against the account in an amount of bandwidth usage which corresponds to the agreed upon purchase value for the selected item.
Abstract:
An apparatus and method for encoding and decoding additional information into a stream of digitized samples in an integral manner. The information is encoded using special keys. The information is contained in the samples, not prepended or appended to the sample stream. The method makes it extremely difficult to find the information in the samples if the proper keys are not possessed by the decoder. The method does not cause a significant degradation to the sample stream. The method is used to establish ownership of copyrighted digital multimedia content and provide a disincentive to piracy of such material.
Abstract:
Disclosed herein are methods and systems for encoding digital watermarks into content signals. Also disclosed are systems and methods for detecting and/or verifying digital watermarks in content signals. According to one embodiment, a system for encoding of digital watermark information includes: a window identifier for identifying a sample window in the signal; an interval calculator for determining a quantization interval of the sample window; and a sampler for normalizing the sample window to provide normalized samples. According to another embodiment, a system for pre-analyzing a digital signal for encoding at least one digital watermark using a digital filter is disclosed. According to another embodiment, a method for pre-analyzing a digital signal for encoding digital watermarks comprises: (1) providing a digital signal; (2) providing a digital filter to be applied to the digital signal; and (3) identifying an area of the digital signal that will be affected by the digital filter based on at least one measurable difference between the digital signal and a counterpart of the digital signal selected from the group consisting of the digital signal as transmitted, the digital signal as stored in a medium, and the digital signal as played backed. According to another embodiment, a method for encoding a watermark in a content signal includes the steps of (1) splitting a watermark bit stream; and (2) encoding at least half of the watermark bit stream in the content signal using inverted instances of the watermark bit stream. Other methods and systems for encoding/decoding digital watermarks are also disclosed.
Abstract:
Disclosed herein are methods and systems for encoding digital watermarks into content signals. Also disclosed are systems and methods for detecting and/or verifying digital watermarks in content signals. According to one embodiment, a system for encoding of digital watermark information includes: a window identifier for identifying a sample window in the signal; an interval calculator for determining a quantization interval of the sample window; and a sampler for normalizing the sample window to provide normalized samples. According to another embodiment, a system for pre-analyzing a digital signal for encoding at least one digital watermark using a digital filter is disclosed. According to another embodiment, a method for pre-analyzing a digital signal for encoding digital watermarks comprises: (1) providing a digital signal; (2) providing a digital filter to be applied to the digital signal; and (3) identifying an area of the digital signal that will be affected by the digital filter based on at least one measurable difference between the digital signal and a counterpart of the digital signal selected from the group consisting of the digital signal as transmitted, the digital signal as stored in a medium, and the digital signal as played backed. According to another embodiment, a method for encoding a watermark in a content signal includes the steps of (1) splitting a watermark bit stream; and (2) encoding at least half of the watermark bit stream in the content signal using inverted instances of the watermark bit stream. Other methods and systems for encoding/decoding digital watermarks are also disclosed.
Abstract:
Disclosed herein are methods and systems for encoding digital watermarks into content signals. Also disclosed are systems and methods for detecting and/or verifying digital watermarks in content signals. According to one embodiment, a system for encoding of digital watermark information includes: a window identifier for identifying a sample window in the signal; an interval calculator for determining a quantization interval of the sample window; and a sampler for normalizing the sample window to provide normalized samples. According to another embodiment, a system for pre-analyzing a digital signal for encoding at least one digital watermark using a digital filter is disclosed. According to another embodiment, a method for pre-analyzing a digital signal for encoding digital watermarks comprises: (1) providing a digital signal; (2) providing a digital filter to be applied to the digital signal; and (3) identifying an area of the digital signal that will be affected by the digital filter based on at least one measurable difference between the digital signal and a counterpart of the digital signal selected from the group consisting of the digital signal as transmitted, the digital signal as stored in a medium, and the digital signal as played backed. According to another embodiment, a method for encoding a watermark in a content signal includes the steps of (1) splitting a watermark bit stream; and (2) encoding at least half of the watermark bit stream in the content signal using inverted instances of the watermark bit stream. Other methods and systems for encoding/decoding digital watermarks are also disclosed.
Abstract:
The implementations of digital watermarks can be optimally suited to particular transmission, distribution and storage mediums given the nature of digitally-sampled audio, video and other multimedia works. Watermark application parameters can be adapted to the individual characteristics of a given digital sample stream. Watermark information can be either carried in individual samples or in relationships between multiple samples, such as in a waveform shape. More optimal models may be obtained to design watermark systems that are tamper-resistant given the number and breadth of existent digitized sample options with different frequency and time components. The highest quality of a given content signal may be maintained as it is mastered, with the watermark suitably hidden, taking into account usage of digital filters and error correction. The quality of the underlying content signals can be used to identify and highlight advantageous locations for the insertion of digital watermarks. The watermark is integrated as closely as possible to the content signal, at a maximum level to force degradation of the content signal when attempts are made to remove the watermarks.