Abstract:
This disclosure provides systems, methods, and apparatuses for low latency handover between secondary nodes (SNs). In one aspect, a user equipment (UE) may receive a configuration for a plurality of SNs, receive a command to communicate via an SN of the plurality of the SNs, and determine a handover procedure that is to be used to establish a connection with the SN. The handover procedure may be a random access channel (RACH)-less or a two-step RACH procedure and is determined to be used based on a determination that uplink time synchronization is established with the SN.
Abstract:
A method and apparatus enable sidelink resource management using a sidelink discovery signal. The method provides for determining a resource configuration for a sidelink discovery signal. The resource configuration provides one or more parameters for transmitting the sidelink discovery signal. The method also provides for measuring link quality between the UE and at least one candidate relay UE. Based on the measured link quality one of the candidate relay UEs is selected and serves as a relay UE.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a remote user equipment (UE) may transmit, to a relay UE, a request for a Layer 2 relay service and a relay service code associated with the Layer 2 relay service; receive, from the relay UE, a message indicating that the relay UE accepts the Layer 2 relay service associated with the relay service code; establish a radio access signaling radio bearer (SRB) for the Layer 2 relay service using a remote UE radio access SRB configuration; and communicate via the radio access SRB. Numerous other aspects are provided.
Abstract:
The present disclosure provides systems, methods, and apparatuses for maintaining continuity of a buffer status report (BSR) from a user equipment (UE) when the UE is handed over between base stations. In one aspect, a base station or a component thereof may be configured to allocate a set of resources for transmission by a UE. The set of resources may have a capacity that is insufficient for an amount of data indicated by a BSR from the UE. The base station or component thereof may be further configured to transmit, to another base station in association with handover of the UE, an indication that the capacity of the set of resources is insufficient for the amount of the data indicated by the BSR.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect an out-of-coverage scenario based at least in part on determining that a synchronization source associated with a wireless network is unavailable or has a signal strength that fails to satisfy a threshold. The UE may transmit, on a sidelink channel, a sidelink synchronization signal in a transmission period that includes a plurality of synchronization signal occasions based at least in part on the out-of-coverage scenario. In some aspects, the UE may transmit the sidelink synchronization signal according to a reduced duty cycle that causes the sidelink synchronization signal to be transmitted during fewer than all of the plurality of synchronization signal occasions. Numerous other aspects are provided.
Abstract:
Aspects of the disclosure relate to relaying data between a PC5 remote UE and a network entity (e.g., 5G core network entity) via an inter-working function (e.g., N3IWF) over sidelink UE-to-NW relay access. In an example operation, a relay UE establishes a connection with the network entity and determines whether relay access to the network entity via an inter-working function device is supported at the relay UE. The relay UE then indicates, to the remote UE, support of the relay access to the network entity via the inter-working function device. The relay UE receives, from the remote UE, a request to relay data between the remote UE and the network entity via the inter-working function device, and thereafter, relays the data between the remote UE and the network entity via the inter-working function device based on the request. Other aspects and features are also claimed and described.
Abstract:
Aspects of the present disclosure relate to wireless communications, and more particularly, to procedures for supporting conditional new radio (NR) secondary node (SN) addition and change by using conditional handover (CHO) procedures. A method that may be performed by a user equipment (UE) includes receiving, from a master node (MN), configuration information, identifying a set of candidate cells for a conditional addition or change of a SN for a the UE based on execution criteria, detecting the execution criteria is met for one of the candidate cells, and taking action to add or change to the candidate cell as an SN based on the detection.
Abstract:
The present disclosure relates to methods and devices for a handover procedure which may include a user equipment (UE), first base station, and a second base station. In one aspect, the UE can receive an indication to handover from the first base station to the second base station. The UE may then establish a connection with the second base station. In another aspect, the UE can maintain a connection with the first base station over a period of time during the handover. The UE can also communicate with the first base station and the second base station during the period of time based on a time division multiplexing (TDM) pattern. The TDM pattern can comprise a pattern of subframes for communicating with the first and second base station. In another aspect, the UE can release the connection with the first base station at the end of the period of time.
Abstract:
The disclosure generally relates to optimized always-on wireless service using network assistance and keep-alives. More particularly, in response to a user equipment (UE) requesting a bearer for an always-on service, a network may establish the bearer for the always-on service and transmit an availability time that indicates a period during which the bearer will be held in an active state to the UE. Any applications running on the UE may then use the bearer for the always-on service, and the UE may transmit a single keep-alive message to the network before the availability time expires to reset the period during which the bearer will be held in the active state. Furthermore, the keep-alive message may be structured to not generate a reply and thereby reduce battery consumption, reduce communication overhead, and improve network capacity
Abstract:
Techniques for RRC message delivery configuration for remote UEs may include, for example, a remote UE transmitting a request, to a relay UE, to establish a connection with a base station. The relay UE may determine a state (e.g., idle or connected) of the relay UE and, based on the state, may forward the request to the base station and receive a response to the request via a Uu radio link control (RLC) channel for relaying communications between the remote UE and the base station.