Abstract:
Methods and systems are disclosed for improving reliability in mobile device positioning. A mobile device generates position data for a device, receives a first access point position reliability state associated with the first access point, determines a reliability of the position data based on the first access point position reliability state and an estimated location of the first access point, determines a threshold reliability requirement of an application associated with the mobile device, compares the reliability of the position data to the threshold reliability requirement of the application, and provides the position data of the device based on the comparison. A network entity determines access point characteristics associated with an access point, generates a position reliability state for the access point, sends the position reliability state to a mobile device, receives position data associated with the mobile device, and determines a trustworthiness of the position data.
Abstract:
Methods and systems for utilizing priority based geofences are disclosed. A mobile device receives, from another device over a wireless network, at least one geofence, each of the at least one geofence having an assigned priority level indicating an importance of the at least one geofence, wherein the assigned priority level is one of a plurality of priority levels and is received from the other device over the wireless network, determines, based on the priority level of the at least one geofence, a geofence breach detection method and an evaluation rate, and monitors a position of the mobile device relative to the at least one geofence at the evaluation rate using the geofence breach detection method.
Abstract:
Techniques for determining a relative Time Calibration (dTcal) value for a mobile device model are disclosed. An example of an apparatus according to the disclosure includes a memory, a receiver configured to receive measurements and a mobile device model information from mobile devices disposed in geographic areas, a processor configured to determine a baseline mobile device model and other mobile devices models based on the measurements, calculate a baseline measurement value based on the measurement values that correspond to the baseline mobile device model, determine difference values based on the baseline measurement value and the other mobile device model measurement values, determine a model specific dTcal value based on the difference values for at least one of the other mobile device models, and store the model specific dTcal value in the memory.
Abstract:
Systems, apparatus and methods for determining a cyclic shift delay (CSD) mode from a plurality of CSD modes is disclosed. A received OFDM signal is converted to a channel impulse response (CIR) signal in the time domain and/or a channel frequency response (CFR) signal in the frequency domain. Matched filters and a comparator are used to determine a most likely current CSD mode. Alternatively, a classifier is used with a number of inputs including outputs from two or more matched filters and one or more outputs from a feature extractor. The feature extractor extracts features in the time domain from the CIR signal and/or in the frequency domain from the CFR signal useful in distinguishing various CSD modes.
Abstract:
Method and apparatus for controlling crowdsourcing data are disclosed. The method may include comparing a set of access points detected in an area of a wireless environment by the mobile device to a set of known access points for the area, determining a level of crowdsourcing based at least in part on the comparison, where the level of crowdsourcing controls a quantity of crowdsourcing data to be collected, uploaded, or a combination thereof by the mobile device, and performing crowdsourcing, at least in part, in accordance with the determined level of crowdsourcing, where the determined level of crowdsourcing affects a frequency of crowdsourcing operations to be performed by the mobile device, a type of quantization to be applied to crowdsourcing data collected, or some combination thereof.
Abstract:
Method, apparatus and computer program product for monitoring wireless wide area network almanac integrity in a wireless wide area network are disclosed. In one embodiment, the method comprises receiving crowdsourcing data from a plurality of mobile devices, determining a change to a wireless wide area network almanac using the crowdsourcing data, and updating a database in accordance with the change to the wireless wide area network almanac.
Abstract:
Methods, apparatuses, and devices are disclosed to estimate a position of a mobile device using, for example, beacon signals transmitted using virtual access points utilizing a single, physical transceiver. Determination that beacon signals emanate from a single, physical transceiver may be based, at least in part, on a similarity among acquired beacon signals conveying identifiers, such as media access control identification (MAC ID) addresses and/or basic service set identifiers (BSSIDs), and on measurement of beacon signal characteristics, such as received signal strength at a mobile device and/or round trip time between the mobile device and the transceiver.
Abstract:
Various techniques are provided which may be implemented as methods, apparatuses and articles of manufacture for use by a mobile device. In certain example implementations, a mobile device may process a barometric pressure measurement indicative of an altitude effect and a weather effect to determine a first parameter corresponding to the altitude effect and a second parameter corresponding to the weather. Such a mobile device may further determine whether it may be transitioning or may have transitioned from an initial level to another level of a multiple level structure based, at least in part, on the first and second parameters.
Abstract:
Techniques for publishing location information associated with a non-geotagged transceiver are disclosed. A method for publishing a position of a non-geotagged transceiver in a wireless communication system includes determining a first position of the non-geotagged transceiver based on a periodic neighbor list, determining a second position of the non-geotagged transceiver based on an accumulated neighbor list, determining if the first position and the second position agree, publishing a third position if the first position and the second position agree, such that the third position is determined based on the union of the periodic neighbor list and the accumulated neighbor list, and resetting the accumulated neighbor list if the first and second position do not agree.
Abstract:
Disclosed are systems, methods and devices for providing positioning assistance data to a mobile device. In a particular implementation, a mobile device may receive parameters representing an inference model. The mobile device may then apply observations to the inference model to classify the location of the mobile device as being in a particular region. The mobile device may then request positioning assistance data based, at least in part, on the particular region.