Abstract:
A data processing apparatus includes a compression circuit, a rate controller, and an output interface. The compression circuit generates compressed pixel data groups, each derived from applying a compression operation to pixel data of a pixel group, wherein the pixel group includes a portion of a plurality of pixels in a picture. The rate controller applies bit rate control to each compression operation, wherein the rate controller adjusts the bit rate control according to a position of each pixel boundary between different pixel groups. The output interface outputs the compressed pixel data groups via a plurality of camera ports of a camera interface, respectively.
Abstract:
A video decoding method for decoding a bit stream to a plurality of frames, applied in a video decoding system, includes: determining whether a size of a current picture is equal to that of a next picture according to the bit stream; scaling a corresponding reference frame for the next picture to generate a scaled frame when the size of the current picture is not equal to that of the next picture; and storing the scaled frame in a first buffer of a storage unit, wherein at least a portion of a first frame originally stored in the first buffer is used; wherein when it is determined that the size of the current picture is not equal to that of the next picture, the next picture is encoded in the bit stream in a mode that the scaled corresponding reference frame is required for decoding the next picture.
Abstract:
An image resizing method includes at least the following steps: receiving at least one input image; performing an image content analysis upon at least one image selected from the at least one input image to obtain an image content analysis result; and creating a target image with a target image resolution by scaling the at least one input image according to the image content analysis result, wherein the target image resolution is different from an image resolution of the at least one input image.
Abstract:
A data processing apparatus includes a compression circuit and an output interface. The compression circuit generates a plurality of compressed pixel data groups by compressing pixel data of a plurality of pixels of a picture based on a pixel data grouping setting of the picture. The output interface records indication information in an output bitstream, and outputs the output bitstream via a display interface. The output bitstream is derived from the compressed pixel data groups. The indication information is set in response to the pixel data grouping setting employed by the compression circuit.
Abstract:
The invention is related to a method, a device, and a machine readable medium for image capture and selection. One of the disclosed embodiments of the invention is specifically related to an image selecting method performed by an image capturing device for selecting at least one image from a sequence of captured images. The method includes storing a plurality of the captured images in a buffer, wherein each of the buffered images has an interested region supposed to encompass an interested target; detecting intactness information describing intactness of the interested target as encompassed in the interested regions of a plurality of the buffered images; and selecting at least one of the buffered images based on the detected intactness information, wherein intactness indicating whether or to what extent the interested target encompassed in the interested region.
Abstract:
A video frame processing method, which comprises: (a) capturing at least one first video frame via a first camera; (b) capturing at least one second video frame via a second camera; and (c) adjusting one candidate second video frame of the second video frames based on one of the first video frame to generate a target single view video frame.
Abstract:
An image encoding method with rate control includes at least the following steps: defining a plurality of candidate bit budgets corresponding to different pre-defined maximum encoded bit lengths for one coding unit respectively; when encoding pixel data of a plurality of pixels within a current coding unit of an access unit of a frame, determining a target bit budget selected from the candidate bit budgets and allocating the target bit budget to the current coding unit; and outputting encoded pixel data of the pixels within the current coding unit that is generated from the encoder, wherein a bit length of the encoded pixel data is smaller than or equal to the target bit budget.
Abstract:
A method for generating a decoded value from a codeword which is binarized utilizing a concatenated unary/k-th order Exp-Golomb code includes: identifying a first portion of the codeword, a second portion of the codeword and a third portion of the codeword; generating an offset according to the second portion; decoding the third portion to generate an index value; and generating the decoded value by adding the offset and the index value.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor generates a compressed multimedia data by compressing a multimedia data according to a compression algorithm. The output interface records indication information in an output bitstream, and outputs the output bitstream via a camera interface, wherein the output bitstream is derived from the compressed multimedia data, and the indication information is set in response to the compression algorithm employed by the compressor. Another data processing apparatus has a de-compressor and an input interface. The de-compressor de-compresses a compressed multimedia data derived from an input bitstream. The input interface receives the input bitstream via a camera interface, parses indication information included in the input bitstream, and configures the de-compressor to employ a de-compression algorithm as indicated by the indication information.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor receives an input multimedia data, and generates an output multimedia data according to the input multimedia data. The output interface packs the output multimedia data into an output bitstream, and outputs the output bitstream via a camera interface. The compressor adaptively adjusts a compression algorithm applied to the input multimedia data according to at least one sensor input signal. For example, the at least one sensor input signal is generated from at least one of an ambient light sensor, a proximity sensor, a thermal sensor, an accelerometer, a gyroscope, and a receiver of a global navigation satellite system. Alternatively, the compressor may be configured to adaptively adjust the compression algorithm applied to the input multimedia data according to a sensor configuration of a camera sensor or a display configuration of a display apparatus.