Abstract:
The present invention relates to a method of monitoring a control channel and a wireless device using same in a multiple antenna system in which a plurality of layers are defined. The wireless device monitors a first downlink control channel in a first search space which is mapped to a first layer, and a second downlink control channel in a second search space which is mapped to a second layer. The first layer of the plurality of layers is the lowest layer.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
Provided are a method for receiving data in a wireless communication system and a wireless device. The wireless device receives a downlink grant on a downlink control channel, and determines the size of a downlink transmission block on the basis of the downlink grant. The maximum size of the downlink transmission block is limited to below or equal to a specific value.
Abstract:
The present invention relates to a method and device for exchanging data in a wireless communication system. A base station exchanges at least one of a cell identifier (ID) of a higher layer parameter, a cyclic shift parameter nDMRS(1) and a group assignment physical uplink shared channel (PUSCH) parameter #ss with another base station through an X2 interface and performs scheduling of a terminal on the basis of the exchanged information.
Abstract:
A method of transmitting a sounding reference signal (SRS) includes receiving SRS operation information including a sounding indicator, the sounding indicator indicating whether SRS transmission takes place at a subframe; generating the SRS according to the SRS operation information, and if the sounding indicator indicates occurrence of SRS transmission, transmitting the SRS at the subframe. Multiplexing can be achieved without collision between data and a sounding reference signal and single carrier characteristics required in uplink transmission can be preserved.
Abstract:
Provided are a method and an apparatus for controlling inter-cell interference in a wireless communication system. A first cell receives control information related to the configuration of a downlink control channel from a second cell, and the first cell determines a transmission resource of the downlink control channel in accordance with the control information.
Abstract:
Provided are a method and a wireless device for monitoring a downlink control channel in a wireless communication system. The wireless device monitors a first downlink control channel in a first search space, and monitors a second downlink control channel in a second search space. The first downlink control channel is modulated by a first reference signal, which is generated on the basis of an identifier of a first serving cell, and the second downlink control channel is modulated by a second reference signal, which is generated on the basis of an identifier of a second serving cell.
Abstract:
A method performed by a user equipment (UE) in a wireless communication system, includes receiving a sounding reference signal (SRS) configuration via a radio resource control (RRC) signaling, the SRS configuration indicating a subframe configured for SRS transmission, wherein the SRS configuration includes an indicator indicating whether an aperiodic SRS transmission or a periodic SRS transmission is performed in the subframe configured for SRS transmission; based on the indicator indicating that the aperiodic SRS transmission is performed, receiving request information for requesting a transmission of an SRS and aperiodically transmitting the SRS in the configured subframe; and based on the indicator indicating that the periodic SRS transmission is performed, periodically transmitting the SRS in the configured subframe.
Abstract:
A method is provided for receiving a downlink signal at a downlink reception entity in a wireless communication system. Downlink control information is received by demodulating a Physical Downlink Control Channel (PDCCH) in a first resource block (RB) pair within an RB bundle by using a first Demodulation Reference Signal (DMRS). Downlink data is received by demodulating a Physical Downlink Shared Channel (PDSCH) in one or more second RB pairs scheduled by the downlink control information within the RB bundle by using a second DMRS based on an assumption that a same precoder is applied to the scheduled one or more second RB pairs.
Abstract:
A method of transmitting a control signal of a relay station is provided. The method includes: receiving a control signal and data from a base station in a first subframe; and transmitting an acknowledgement/negative acknowledgement (ACK/NACK) signal for the data to the base station in a second subframe, wherein a radio resource for transmitting the ACK/NACK signal is determined by a radio resource to which the control signal received in the first subframe is allocated and by a logical physical uplink control channel (PUCCH) index received by using a higher layer signal.