摘要:
This invention relates to a method of extending the shelf-life of constructs, in particular bioabsorbable stents, comprising semi-crystalline polymers by increasing the crystallinity of the polymers.
摘要:
Methods to expand polymer tubing with desirable or optimum morphology and mechanical properties for stent manufacture and fabrication of a stent therefrom are disclosed.
摘要:
Disclosed herein is a stent comprising: a bioabsorbable polymeric scaffolding; and a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
摘要:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.
摘要:
Methods and systems for manufacturing an implantable medical device, such as a stent, from a tube with desirable mechanical properties, such as improved circumferential strength and rigidity, are described herein. Improved circumferential strength and rigidity may be obtained by inducing molecular orientation in materials for use in manufacturing an implantable medical device. Some embodiments may include inducing molecular orientation by expansion of a molten annular polymer film. Other embodiments may include inducing circumferential molecular orientation by inducing circumferential flow in a molten polymer. In certain embodiments, circumferential orientation may be induced by expansion of a polymer tube. Further embodiments may include manufacturing an implantable medical device from a biaxially oriented planar polymer film.
摘要:
Provided herein is a method of forming medical device that includes RGD attached to the device via a spacer compound. The method comprises providing a spacer compound comprising a hydrophobic moiety and a hydrophilic moiety, grafting or embedding the spacer compound to the surface layer of the polymer to cause the hydrophobic moiety to be grafted to or embedded within the surface layer of polymer, and attaching a chemo-attractant to the hydrophilic moiety.