Abstract:
A sputtering apparatus and a target changing device thereof are disclosed. The target changing device includes a stand, a mounting shaft on the stand, a target mounting body sleeved on an outside of the mounting shaft and being rotatable around an axis of the mounting shaft, and a first driving mechanism configured to drive the target mounting body to rotate around the axis of the mounting shaft. The target mounting body includes at least two target mounting surfaces configured to mount targets. When the target mounting body rotates around the axis of the mounting shaft, each of the target mounting surfaces may be switched between an operating state orientation and an idle orientation.
Abstract:
A display device includes a display panel and a grating layer inside or outside the display panel. The display panel includes R pixels, G pixels and B pixels. The grating layer includes a R grating region, a G grating region and a B grating region; along a direction from a center of a central area of the view field of the display device to a non-central area of the view field, each of grating periods of the R, G and B grating regions gradually decreases; and lights emitted from positions of the display device corresponding to the R pixel, the G pixel and the B pixel are emitted respectively along straight lines formed by the position of the R pixel and the viewer, formed by the position of the G pixel and the viewer and formed by the position of the B pixel and the viewer.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate includes a substrate (10) and first thin-film transistors (TFTs) (21) and first electrodes (40) formed on the substrate (10). The first TFT (21) includes a gate electrode (200), an active layer (202), a source electrode (205) and a drain electrode (204). The first electrode (40) is electrically connected with the drain electrode (204) of the first TFT (21), at least covers an area of the active layer (202) of the first TFT, not overlapped with the source electrode (205) and the drain electrode (204), and can absorb ultraviolet (UV) light. The array substrate can solve the problem of reducing the display performance of the display device as the performances degrade and even fail due to UV irradiation of the TFTs.
Abstract:
The present disclosure relates to an aluminum electrode, a method of forming an aluminum electrode and an electronic device therewith. An aluminum electrode according to one aspect of the present disclosure comprises: a bottom layer consisting of molybdenum; a top layer consisting of molybdenum; and an aluminum layer located between the bottom layer and the top layer, wherein the bottom layer, the top layer and the aluminum layer are formed at a temperature below 120° C. An aluminum electrode according to one embodiment of the present disclosure eliminates the mouse bite phenomenon. An aluminum electrode according to another aspect of the present disclosure comprises: a bottom layer consisting of a metal or metal-alloy nitride; a top layer consisting of molybdenum; and an aluminum layer located between the bottom layer and the top layer, wherein the bottom layer, the top layer and the aluminum layer are formed at a temperature below 120° C. An aluminum electrode according to another embodiment of the present disclosure eliminates both of the mouse bite phenomenon and the undercut phenomenon, and can further arrive at a desired profile angle by controlling the content of nitrogen.
Abstract:
A display panel includes a touch scanning electrode and a touch sensing electrode. One of the touch scanning electrode and the touch sensing electrode is provided with at least one separation layer therein or both the touch scanning electrode and the touch sensing electrode are provided with at least one separation layer therein respectively, and the at least one separation layer separates the touch scanning electrode or the touch sensing electrode which is provided with the at least one separation layer into at least two electrode sub-layers, wherein, the at least two electrode sub-layers are made of an electrode material capable of being transformed from an amorphous state into a polycrystalline state, and the at least one separation layer is used for preventing the electrode material from being subject to a crystallization reaction before a crystallization process.
Abstract:
A color filter substrate is provided, comprising: a substrate comprising a plurality of pixel regions arranged in matrix; a color resin layer formed in each of the pixel regions on the substrate; and a transparent pillar formed on the substrate and located in the color resin layer. In addition, a manufacturing method for the color filter substrate is also provided.
Abstract:
A double-surface manufacturing method and an exposure apparatus in the manufacturing process of semiconductors and liquid crystal displays (LCD) are provided. In the exposure process, two masks in the exposure apparatus are subjected to alignment treatment; the substrate is conveyed to a position between the two masks in the exposure apparatus; and patterns of the two surfaces of the substrate are processed. The exposure apparatus comprises two masks, wherein a substrate to be processed is disposed between the two masks; and mask alignment marks are respectively disposed on the two masks. The embodiments of the present invention improve the accuracy of the patterns of the two surfaces of the substrate and the product quality in the double surfaces manufacturing of the substrate.
Abstract:
A developing apparatus comprises: a photodetection unit, which emits detecting light toward the development area of the substrate to be developed within a scheduled time after the substrate to be developed is immersed into the developer solution; and a processing unit electrically coupled with the photodetection unit for determining the time interval which it takes for development to occur in the development area by means of the detecting light, and for determining that the developer solution is failed if the development time interval is determined to be out of the preset time range. A method for monitoring the developer solution is also provided.
Abstract:
Provided is a pixel circuit. The pixel circuit includes a data writing circuit, a light-emission adjusting circuit, a light-emission control circuit, and a light-emission driving circuit; wherein the data writing circuit is coupled to a gate signal terminal, a first data signal terminal and a first node; the light-emission adjusting circuit is coupled to a target signal terminal, the first node and a second node; the light-emission control circuit is coupled to the second node, a reference signal terminal, a light-emission control signal terminal and a third node; the light-emission driving circuit is coupled to the third node, the gate signal terminal, a first power supply terminal, a second data signal terminal and a light-emitting element.
Abstract:
A display substrate and a display device are provided. The display substrate includes light emitting diode chips, each light emitting diode chip includes light emitting units which respectively emit light of different colors, each light emitting unit includes a first electrode, a light emitting layer, a base and a second electrode, and the base and the second electrode are respectively located at both sides of the light emitting layer. In each light emitting diode chip, the light emitting units share the base and the first electrode, the light emitting layers of the light emitting units emit light of the same color, and at least one light emitting unit further includes a first color conversion layer located at a side of the base away from the light emitting layer, so as to convert first color light emitted by the light emitting layer into second color light.