Abstract:
Embodiments of the disclosure provide an electronic package device and a fabrication method thereof, and a method for testing the electronic package device. The electronic package device comprises a base substrate and a package substrate that are provided opposite to each other, and a sealant provided therebetween. The electronic package device further comprises an electronic function layer provided on a side of the base substrate facing the package substrate, and a laminated film layer and a test lead provided on a side of the package substrate facing the base substrate. The laminated film layer comprises a hygroscopic film adjacent to the package substrate and a piezoelectric film coating surfaces of the hygroscopic film. The piezoelectric film contacts one end of the test lead, and the other end of the test lead passes through the sealant and extends to an exterior of the electronic package device.
Abstract:
A display panel packaging structure is provided to avoid damage of the display panel during transportation. The display panel packaging structure includes a box and a cover covering the box. The box is adapted to receive a display panel and the box is provided with at least a stopper therein adapted to abut against a side surface of the display panel.
Abstract:
An OLED display substrate includes a base substrate with a display region arranged thereon. First, second and third sub-pixels are arranged in the display region. A first electrode layer, a pixel defining layer, a second electrode layer, and organic functional layers are arranged in the display region. The organic functional layers include first, second and third light-emitting layers. The first light-emitting layer covers the display region and is an integral structure. The second and third light-emitting layers are arranged on a side of the first light-emitting layer towards the second electrode layer. An orthographic projection of each sub light-emitting layer of the second and third light-emitting layers on the base substrate completely covers an orthographic projection of an opening of the pixel defining layer on the base substrate, and does not overlap with orthographic projections of other openings of the pixel defining layer on the base substrate.
Abstract:
The present disclosure provides a light field display device. The light field display device includes a plurality of imaging modules. Each of the imaging modules includes a liquid crystal lens array and a display screen, the liquid crystal lens array is disposed on a light exit side of the display screen, and images of the plurality of imaging modules are parallel to each other.
Abstract:
An OLED display substrate, a manufacturing method thereof and a display device are provided. The OLED display substrate includes a TFT array layer, a first electrode, a pixel definition layer, an OEL layer and a second electrode arranged on a base substrate. The pixel definition layer is configured to define a plurality of subpixel regions. A reflection structure surrounds each subpixel region and is capable of reflecting light beams from the OEL layer and beyond an escaping cone in such a manner as to enable at least parts of the light beams to enter the escaping cone.
Abstract:
The present disclosure belongs to the field of display technology, and particularly relates to a 3D display panel, a method for driving the same and a display apparatus. The 3D display panel is divided into a plurality of pixel regions and comprises a light emitting unit, and the light emitting unit includes a plurality of light emitting devices arranged in the plurality of pixel regions. The plurality of light emitting devices are configured to form a barrier pattern of alternating bright and dark bands during display of the 3D display panel.
Abstract:
The disclosure relates to an array substrate, a display panel, a display device, and a method for manufacturing the array substrate. The array substrate includes a first substrate, a light emitting device on the first substrate, the light emitting device including a first electrode, a light emitting layer, and a second electrode sequentially disposed in a direction away from the first substrate, wherein the first electrode is transparent, and wherein the second electrode is reflective, an opaque portion between the first substrate and the light emitting device, wherein a projection of the light emitting device on the first substrate partially overlap with a projection of the opaque portion on the first substrate, and a reflective member between the opaque portion and the light emitting layer.
Abstract:
A method of forming a crystallized semiconductor layer includes forming an insulating crystallization inducing layer on a base substrate; forming a semiconductor material layer on a side of the insulating crystallization inducing layer away from the base substrate by depositing a semiconductor material on the insulating crystallization inducing layer, the semiconductor material being deposited at a deposition temperature that induces crystallization of the semiconductor material; forming an alloy crystallization inducing layer including an alloy on a side of the semiconductor material layer away from the insulating crystallization inducing layer; and annealing the alloy crystallization inducing layer to further induce crystallization of the semiconductor material to form the crystallized semiconductor layer. Annealing the alloy crystallization inducing layer is performed to enrich a relatively more conductive element of the alloy to a side away from the base substrate, thereby forming an annealed crystallization inducing layer.
Abstract:
The present disclosure relates to a method of manufacturing an OLED device, an OLED device and a display panel. The method comprises: forming a first electrode layer over a substrate; forming a pixel define layer over the first electrode layer, the pixel define layer having a plurality of openings each corresponding to a light emitting region of each sub-pixel unit; performing a roughening process over a surface of the pixel define layer apart away from the first electrode layer; forming a hole injection layer covering the pixel define layer and the openings; and forming a hole transport layer, a light emitting layer, an electron transport layer and a second electrode layer in sequence over the hole injection layer at regions corresponding to the openings.
Abstract:
The present disclosure provides an organic light emitting diode (OLED) device and a method for manufacturing the same, an OLED display substrate and an OLED display device. The OLED device of the present disclosure comprises a substrate, and a first electrode, a light emitting layer and a second electrode arranged on the substrate, wherein the light emitting layer comprises fibers of p-phenylene based polymer as a host material, and the fibers of p-phenylene based polymer are arranged in a first orientation; and wherein the light emitted by the fibers of p-phenylene based polymer arranged in the first orientation is linearly polarized light in a first direction. The OLED device of the present disclosure can simultaneously ensure a good contrast, brightness and light transmittance.