Abstract:
A radio communication system in which a plurality of wireless terminals form wireless channels separately between a common base station unit and wireless terminals and communicate with the base station unit, the radio communications system comprises quality managing section manages communication quality of wireless channel for each of wireless terminals by assigning occupied band of wireless channel on basis of a predetermined parameter, channel securing section secures continuously wireless channel for at least one wireless terminal by controlling data rate of the wireless channel according to change in channel state between wireless sections, and rate change detecting section supplies trigger information to quality managing section when data rate of at least one wireless channel changes as a result of control performed by channel securing section, the quality managing section, when being given trigger, updating occupied band assigned state of the wireless channel for each of wireless terminals.
Abstract:
A communication apparatus includes a physical frame generating device configured to generate a single physical frame which includes a plurality of media access control frames having different destinations and in which frames, of the media access control frames, which have the same destination are consecutively arranged, and a transmitting device configured to transmit the physical frame generated by the physical frame generating device.
Abstract:
A wireless communication apparatus includes a carrier sense device which determines whether or not the first channel satisfies a specific condition of the determination of an idle state, and an occupation/release control device which performs control to make the first physical layer protocol processing device generate and transmit a first frame which declares that the first channel will be occupied for a first predetermined period by virtual carrier sense, when the specific condition of the determination of the idle state is satisfied, and perform control to make the second physical layer protocol processing device generate and transmit a second frame which declares that the second channel will be occupied for a second predetermined period by virtual carrier sense.
Abstract:
According to one embodiment, a wireless communication apparatus is provided with first and second determination units. The first unit determines based on a first carrier sense threshold whether busy state or not and specifies a first time when busy state is determined with the first threshold, and determines based on a second carrier sense threshold smaller than the first threshold whether busy state or not and specifies a second time when busy state is determined. The second unit determines, if at least busy state is determined based on the second threshold and the second time precedes a reference time equal to or earlier than the first time, to perform processing for avoiding interference.
Abstract:
There is provided a wireless terminal including: a frame allocating unit performing an allocation process on a frame to be transmitted to another wireless terminal; a first communication unit assigning a sequence number to the allocated frame and transmitting the frame to the another wireless terminal through a first channel or a first mode; a second communication unit assigning a sequence number to the allocated frame and transmitting the frame to the another wireless terminal through a second channel or a second mode, wherein the allocating unit allocates the frame to one of the first and second communication units; when changing the transmission source of the frame from the one to the other communication unit, a change notification frame including a transmission starting sequence number is transmitted to the another wireless terminal; and the frame allocating unit switches the allocation destination of the frame from the one to the other.
Abstract:
A wireless communication apparatus performs access control which starts transmission after a backoff time passes since an available state of a channel is detected through carrier sense, the backoff time being set based on a random value selected within a contention window width. The wireless communication apparatus includes a remaining time calculating unit which calculates a remaining time until a request delay time time-outs after data is generated, and a setting unit which sets the contention window width according to the remaining time calculated by the remaining time calculating unit.
Abstract:
According to one embodiment, a wireless communication apparatus is provided with first and second determination units. The first unit determines based on a first carrier sense threshold whether busy state or not and specifies a first time when busy state is determined with the first threshold, and determines based on a second carrier sense threshold smaller than the first threshold whether busy state or not and specifies a second time when busy state is determined. The second unit determines, if at least busy state is determined based on the second threshold and the second time precedes a reference time equal to or earlier than the first time, to perform processing for avoiding interference.
Abstract:
A wireless communication apparatus which can simultaneously conduct communication on at least two frequency channels is described. The apparatus includes a communication unit which refers to a connection management table to determine a communication system which can be used by a wireless communication terminal using an identifier of the wireless communication terminal, and conducts communication with the wireless communication terminal on a second frequency channel using the communication system, when a request from the wireless communication terminal to change the first frequency channel to the second frequency channel is permitted.
Abstract:
A wireless communication apparatus including a main queue to store MAC frames, a plurality of subqueues related to the main queue and used to control retransmission of the MAC frame, each of the subqueues having different priority for transmission of the MAC frame, respectively, an extracting device configured to extract the MAC frame from the main queue on the basis of a destination and the priority, and distribute the extracted MAC frame to one of the plurality of subqueues for each priority, and an aggregating device configured to extract MAC frames from the plurality of subqueues to form a MAC super frame.
Abstract:
A physical frame is generated and transmitted to a destination terminal. In this physical frame, one of a data frame, an acknowledgement frame, and an acknowledgement request frame, and a transmission permission frame which is used in place of a normal Ack frame associated with a delayed Block Ack, and permits the destination terminal to perform piggyback transmission, are aggregated.