Abstract:
A substrate testing apparatus for testing a substrate by irradiation of electron beam comprises a scan parameter calculating unit, a stage control unit for controlling the movement of a stage, and an electron beam control unit for controlling an irradiating position of electron beam. The scan parameter calculating unit calculates a stage speed and the irradiating position of electron beam on the basis of an array of measurement points in a unit area set for each substrate species of object to be tested. The scan parameters for the substrate species are automatically calculated, and the driving of the testing apparatus is controlled in accordance with the calculated parameters, whereby it is unnecessary to restart the software.
Abstract:
A pattern width measuring apparatus for accurately measuring pattern width of a pattern formed on a wafer using an electron beam. The pattern widthmeasuring apparatus includes: an electron gun for generating the electron beam; a deflector for scanning the pattern with the electron beam by deflecting the electron beam; a first secondary electron detector and a second secondary electron detector for detecting secondary electrons generated when the electron beam is irradiated on the pattern; a first edge detector for detecting position of a first edge of the pattern based on the quantity of the secondary electrons detected by the first secondary electron detector; a second edge detector for detecting position of a second edge of the pattern based on the quantity of the secondary electrons detected by the second secondary electron detector; and a pattern width computing section for computing pattern width of the pattern based on the position of the first edge and the position of the second edge detected by the first edge detector and the second edge detector.
Abstract:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
Abstract:
To make it possible to observe the bottom of a contact hole and internal wires, in observation of the contact hole 102, by scanning it at a predetermined acceleration voltage, the positive charge 106 is formed on the surface of the insulator 101, and the secondary electrons 104 are attracted in the hole by this electric field, and the hole is continuously scanned at an acceleration voltage different from the acceleration voltage, and the sample is observed. When the wires embedded in the insulator are to be observed, by observing the insulator at a predetermined acceleration voltage, an electron beam is allowed to enter the sample, and the sample is continuously scanned at an acceleration voltage different from the acceleration voltage, and hence the existence of wires is reflected as a change in the charge of the surface, and it is observed. In either case, the acceleration voltage before observation is different from the one during observation, and the sample surface is temporarily radiated at an acceleration voltage positively generating a positive or negative charge, and thereafter, the acceleration voltage is returned to a one suited to observation, and the sample is observed.
Abstract:
A method and apparatus for extracting three-dimensional data of an object using an electron microscope are provided. The method for extracting the three-dimensional data of the object includes: obtaining two-dimensional coordinates by respectively projecting the object on a plane perpendicular to an X-axis, on a plane perpendicular to a Y-axis, and on a plane making an angle of 45 degrees from a Z-axis with a Y-Z plane; in portions where three images including the two-dimensional coordinates overlapped, obtaining data of a pixel on a base images among the three images, obtaining data of corresponding pixels of the pixel on the base image to left and right images of the base image, and calculating a disparity on the basis of the data; and extracting three-dimensional depth information of the object using the obtained disparity, the three-dimensional depth information representing a relative distance of the object, and extracting a three-dimensional coordinate on each pixel to determine a three-dimensional location of the object.
Abstract:
A pattern inspection system for inspecting a substrate surface on which a predetermined pattern is formed with radiation of an electron beam and an optical beam. the pattern inspection system includes a radiation and which radiates an electron beam to the substrate, a detection unit which detects a secondarily generated signal attributable to the radiation of the electron beam, a retrieval unit which retrieves an image from the signal detected by the detection unit, and an image processing unit which classifies the retrieved image depending on a type of the image.
Abstract:
There is disclosed a scanning electron microscope capable of detecting secondary electrons emitted from a specimen, using a semi-in-lens type objective lens. A voltage is applied to the specimen from a power supply to decelerate the electron beam immediately ahead of the specimen. Secondary electrons produced from the specimen are confined by a magnetic lens field and move spirally upward. The secondary electrons moving upward travel linearly from a location where the magnetic field of the objective lens is weak. Then, the electrons strike first and second conversion electrodes, producing a large amount of secondary electrons. A voltage is applied to the front face of a detector to produce an electric field near the first opening in the inner polepiece. This field directs the secondary electrons toward the detector, where they are detected.
Abstract:
Image observation at high resolution is realized and irregularity information of a sample is obtained. The reflected electrons 12a emitted in a direction at a small angle with the surface of the sample 8 are detected by the detectors 10a and 10b arranged on the side of the electron source 1 of the magnetic field leakage type object lens 7 and a sample image is formed. Irregularity information of the sample is obtained from the effects of light and shade appearing in the sample image.
Abstract:
A scanning electron microscope system with an electrostatic magnetic field complex objective lens, comprising at least two or more deflection means for tilting a primary electron beam and for projecting the primary electron beam onto a specimen, wherein one of the deflection means is arranged near the objective lens so as to generate a deflection field and also to serve as a compensation field for compensating abaxial aberration at the same time, and abaxial aberration of the primary electron beam deflected by the deflection means is compensated.
Abstract:
A scanning electron microscope is provided which is capable of efficiently detecting ions, such as primary electron excitation ions, reflection electron excitation ions or secondary electron excitation ions caused by a bias electric field, thereby obtaining an absorption current. A scanning electron microscope irradiates an electron beam to a sample while keeping a sample chamber pressure at 1 Pa or higher, to detect generated ions and display a sample image. An ion detecting electrode is provided exclusively for detecting ions. The ion detecting electrode is arranged nearby a path for accelerating ions by a bias electrode.