Abstract:
The present subject matter allows non-orthogonal lines to be formed at the same thickness as the orthogonal lines so as to promote compact designs, to be formed with even line edges, and to be formed efficiently. One aspect of the present subject matter relates to a method for forming non-orthogonal images in a raster-based photolithographic system. According to various embodiments of the method, a first image corresponding to a first data set is formed on a reticle when the reticle is at a first rotational position null1. The reticle is adjusted to a second rotational position null2. A second image corresponding to a second data set is formed on the reticle when the reticle is at the second rotational position null2. The second image is non-orthogonal with respect to the first image. Other aspects are provided herein.
Abstract:
An electronically programmable mask for lithography comprises an array of individually controllable light sources aligned with an array of individually controllable liquid crystals, so that individual pixels may be turned on or off and phase-shifted to provide a desired light intensity distribution on a wafer. The mask may be used in a contact printing mode or in a reduction projection mode.
Abstract:
The invention relates to improving the efficiency of ion flow from an ion source, by reducing heat loss from the source both in the ion chamber of the ion source and its constituent parts (e.g. the electron source). This is achieved by lining the interior of the ion chamber and/or the exterior with heat reflective and/or heat insulating material and by formation of an indirectly heated cathode tube such that heat transfer along the tube and away from the ion chamber is restricted by the formation of slits in the tube. Efficiency of the ion source is further enhanced by impregnating and/or coating the front plate of the ion chamber with a material which comprises an element or compound thereof, the ions of which element are the same specie as those to be implanted into the substrate from the source thereof.
Abstract:
A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures. Each of the lines (p1) comprises alternately first segments (sf) which are free of apertures and second segments (af) which each comprise a number of apertures spaced apart by a row offset (pm), said row offset being a multiple of the width (w) of apertures, the length (A) of said first segments (sf) being greater than the row offset. In front of the blanking means (202) as seen in the direction of the particle beam, a cover means (201) is provided having a plurality of openings (210), each corresponding to a respective opening (230) of the blanking means and having a width (w1) which is smaller than the width (w2) of the openings (220) of the blanking array means.
Abstract:
The invention relates to an ion source for an ion implanter in which source material for providing desired ions is provided in the form of a plate or liner which can be fitted into the reactant chamber of the ion source.
Abstract:
FIB equipment, which irradiates a sample placed on a stage with a focused ion beam (FIB) to perform etching or pattern formation at the irradiation position, comprises an alignment mark formation unit to form an alignment mark by irradiating a periphery of a processing position with the FIB; and a processing position detection unit to superpose an optical microscope image of the area of the processing position at which the alignment mark is formed, and a scanning ion microscope image (SIM image) acquired by FIB irradiation, based on the alignment mark image, and to detect the processing position according to the superposed images.
Abstract:
A high-energy ion implanter for fabricating a semiconductor device includes a low-energy accelerator for converting a polarity of ions flowed in from an ion source; a stripper for converting the ions accelerated from the low-energy accelerator to positive ions in vacuum conditions; a high-energy accelerator for accelerating, in high-energy, the positive ions that are converted in the stripper; a turbo pump for providing vacuum conditions in the stripper; a current sensor for detecting currents to check for abnormal operating conditions of the turbo pump; and a central processing unit (CPU) that interrupts a circuit breaker to suspend the ion implanting process in response to the level of current detected in the current sensor. The high-energy ion implanter of the present invention is capable of preventing an unsuccessful ion implanting process by suspending operation thereof when abnormal operating conditions are detected.
Abstract:
Methods and apparatus are provided for adjusting the profile of a scanned ion beam. The spatial distribution of the unscanned ion beam is measured. The ion beam is scanned at an initial scan speed, and the beam profile of the scanned ion beam is measured. If the measured beam profile is not within specification, a scan speed correction that produces a desired profile correction is determined using a calculation which is based on the spatial distribution of the unscanned ion beam. The scan speed correction may be determined by convolving a candidate scan speed correction with the spatial distribution of the unscanned ion beam to produce a result and determining if the result is sufficiently close to the desired profile correction. A multi-dimensional search algorithm may be used to select the candidate scan speed correction. The ion beam is scanned at a corrected scan speed, which is based on the initial scan speed and the scan speed correction, to produce corrected beam profile.
Abstract:
A method of correcting a photomask, comprises preparing a photomask substrate with a mask pattern including a phase shift pattern, forming a reference hole by removing a part of the mask pattern, applying an ion beam from an ion beam source to an area including the reference hole to allow secondary charged particles to be released from the reference hole, obtaining a position of the reference hole by detecting the secondary charged particles by a detector, calculating a positional relationship between the obtained position of the reference hole and a position of a defect of the mask pattern, and correcting the defect by applying an ion beam from the ion beam source to the defect, based on the calculated positional relationship, wherein a pattern of the reference hole, as viewed in a direction perpendicular to a top surface of the photomask substrate, is substantially rectangular, and a longitudinal direction of the rectangular pattern is parallel to a longitudinal direction of the phase shift pattern.
Abstract:
An ion implantation system contains, in the ion implantation chamber, a workpiece holder that scans vertically while tilting a wafer at an angle of rotation that is rotated out of a perpendicular orientation with respect to the axis of projection in an ion beam. The implant angle into an implant surface on wafer that is retained by the workpiece holder is adjusted by selective rotation of the workpiece holder about its path of motion. A Faraday cup scans the ion beam along the intended location of the implant surface to form a setup measurement plane. The ion beam quality is adjusted to enhance beam uniformity along the setup plane according to these tilt-angle measurements. A charge neutralizing device, such as a flood gun, is moved in operational alignment with the workpiece.