Abstract:
Efficiency of a charge pump circuit is increased. The charge pump circuit includes serially connected fundamental circuits each including a diode-connected transistor and a capacitor. At least one transistor is provided with a back gate, and the back gate is connected to any node in the charge pump circuit. For example, the charge pump circuit is of a step-up type; in which case, if the transistor is an n-channel transistor, a back gate of the transistor in the last stage is connected to an output node of the charge pump circuit. Back gates of the transistors in the other stages are connected to an input node of the charge pump circuit. In this way, the voltage holding capability of the fundamental circuit in the last stage is increased, and the conversion efficiency can be increased because an increase in the threshold of the transistors in the other stages is prevented.
Abstract:
A charge pump circuit using a voltage doubler-type of circuitry for generating an output voltage is described. An output generating stage uses a voltage double structure, except that the transistors in each leg are not cross-coupled to the other leg, but instead are controlled by an auxiliary section. The auxiliary section has a voltage doubler structure, but is not used to drive the load, but instead provides the gate voltage for the precharge section using the same levels as used for the corresponding transistors in the auxiliary section. This arrangement can be particularly advantageous for applications using low supply voltages to address self-loading effect due to loading. As the auxiliary section does not drive the load, its elements can be sized smaller. Additional improvement can be obtained by using separate clock drivers for the auxiliary section to address secondary self-loading effect due to loading.
Abstract:
A system and method for improving the read distance of a transponder. The transponder comprises an antenna receiving energy from an interrogation signal, a resonant capacitor coupling with the antenna to form a tuned circuit, a charge-pump circuit to multiply voltage derived from the tuned circuit and a storage capacitor to store the voltage which has been multiplied by the charge-pump circuit.
Abstract:
A dynamic random access memory (DRAM) is selectively operable in a sleep mode and another mode. The DRAM has data storage cells that are refreshed in the refresh mode. A boosted voltage is provided for the operation of the DRAM. A boosted voltage provider includes a group of charge pump circuits that are selectively activated by a pump control circuit based on a refresh time for refreshing data in the DRAM cells in the sleep mode.
Abstract:
A charge pumping apparatus includes a voltage pumping unit for pumping an input voltage, a voltage pumping control unit for controlling the voltage pumping unit according to a comparison result between the input voltage and an input criterion voltage and a comparison result between an output voltage output from the voltage pumping unit and an output criterion voltage, and an optimum power point tracking unit for tracking an optimum power point in the case of detecting that the output voltage decreases lower than the output criterion voltage, and adjusting an input impedance to change the input criterion voltage to a voltage corresponding to the optimum power point, wherein the optimum power point is a power point where an input power according to the input voltage becomes a maximum. Since the optimum power point is tracked by measuring only a voltage without a current sensor, a power loss is small.
Abstract:
A switching-capacitor regulator with a charge injection mode for a high loading current is provided, where the switching-capacitor regulator is used to generate an output voltage at an output node, and the switching-capacitor regulator includes a storage capacitor, a switch module, a current source and a control unit. The switch module is coupled between the storage capacitor, a first supply voltage, a second supply voltage and the output node. The current source is coupled to the output node, and is used for selectively providing a current to the output node. The control unit is coupled to the switch module and the output node, and is used for controlling the switch module to selectively charge or discharge the storage capacitor, and for controlling the current source to selectively provide the current to the output node, to adjust a voltage level of the output voltage.
Abstract:
A charge-pump circuit a plurality of transistor stages connected in series between a supply voltage input node and a boosted voltage output node, wherein at least one transistor stage comprises a multiple-gate transistor, which transistor comprises at least two gates, of which one is a first gate for switching the transistor on or off according to a voltage applied to the first gate, and one is an additional second gate for controlling the threshold voltage of the multiple-gate transistor, independently of the first gate, according to a control voltage applied to the second gate.
Abstract:
Charge pump circuits having circuit components such as transistors which may be damaged by voltage transients greater than the normal operating voltage levels of the charge pump circuit, such as may be experienced during powering down. The circuit components to be protected are connected in parallel with a leakage element arranged to have a leakage current that is small enough during normal operation to allow the charge pump to operate effectively but which is large enough, during development of a voltage transient, to prevent excess voltage levels being achieved. The leakage element may have a significant leakage current at a voltage less than the breakdown voltage of the circuit component. Suitable leakage elements are poly diodes.
Abstract:
A multi-step charge pump having a power input terminal and a power output terminal is provided. The multi-step charge pump includes a plurality of capacitors, wherein each of the capacitors has a capacitance. A plurality of switching devices is connected among the capacitors, the power input terminal and the power output terminal. A switch-controlling unit controls the on/off states of the switches, wherein a charging-phase circuit corresponding to a pumping level is formed to charge the capacitors and an output-phase circuit is formed to output a voltage from the power output terminal. At least one of the capacitors herein is changeably selected as a voltage-regulating capacitor.
Abstract:
A switched capacitor power converter includes active semiconductor switch elements that are configured to electrically interconnect capacitors to one another in successive states. Switch driving circuits, each with a control input, power connections, and a drive output are coupled to and for control of one or more of the switch elements. At least some switch driving circuits are configured to be from one or more of the capacitors such that the voltage across power connections of said driving circuit is substantially less than a high voltage terminal of the converter. In some examples, the switch elements are configured to interconnect at least some capacitors to one another through a series of multiple of the switch elements. In some examples, the switch elements and capacitors are configured to form multiple distinct charge transfer paths between the first terminal and the second terminal, and at least some of the switch driving circuits that control switch elements of one of the distinct charge transfer paths are powered from capacitors of one or more other charge transfer paths.