Abstract:
Method and apparatus are disclosed that enable lasers to be stabilized in frequency to a high precision while simultaneously enabling rapid re-acquisition of stabilization control loops in the event of frequency locking loss. The principle of operation is to incorporate two etalons, one having a high finesse for frequency high stability, and one having a low finesse for wide error signal locking range, and electronics that pass control between two control systems in such a manner that any loss of frequency locking is rapidly re-acquired.
Abstract:
A wavelength locker for use at more than one wavelength includes filters with different characteristics for a corresponding detector. The filters may be etalons having different free spectral ranges, e.g., having different apparent or real thicknesses. If more than three such filters are used outputting offset periodic signals, a reference detector may be eliminated and continuous operation over a wavelength range may be realized.
Abstract:
A system of controlling a wavelength of a laser beam is provided. The system comprises a stage for supporting a wafer, an optical convergence unit for emitting the laser beam moving in an optical path toward the stage, and a specific wavelength detecting sensor. The specific wavelength detecting sensor is disposed between the optical convergence unit and the stage. It includes a laser beam absorbing structural body for absorbing a specific wavelength of the laser beam emitting toward the stage. A wavelength controlling unit for selectively controlling the wavelength of the laser beam is also provided.
Abstract:
An excited state atomic line filter. The present invention solves the problem of lack of ground state resonant lines in at wavelengths substantially longer than those of visible light. Atomic line filters of the Faraday or Voigt crossed polarizer type are provided in which alkali metal atomic vapor in a vapor cell is excited with a pump beam to an intermediate excited state where a resonant absorption line, at a desired wavelength, is available. A magnetic field is applied to the cell producing a polarization rotation for polarized light at wavelengths near the resonant absorption lines. Thus all light is blocked by the cross polarizers except light near one of the spaced apart resonant lines. However, the polarization of light at certain wavelengths near the resonant is rotated in the cell and therefore passes through the output polarizer.
Abstract:
A monitored laser system includes a laser with a first mirror and an exit mirror. The laser also has a laser cavity defined at least in part by the first mirror and the exit mirror. Within the laser cavity is an active region that contains material that is capable of stimulated emission at one or more wavelengths such that laser light is emitted from the laser. A power source is coupled to the active region. A multiple reflectivity band reflector (MRBR) is coupled to at least a portion of the emitted laser light. The MRBR has at least first and second wavelength bands with reflectivity above a particular reflectivity separated by at least a third wavelength band having reflectivity below the particular reflectivity. A first photodiode is coupled to at least a portion of the filtered laser light and produces an output based on the amount and wavelength of light received. A means for adjusting the emitted wavelength of the laser toward a particular wavelength in one of the at least first, second, and third wavelength bands based at least in part on the output of the first photodiode.
Abstract:
The method and system operate to maintain a widely tunable laser (WTL) at a selected transmission wavelength. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a transmission line for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector to determine the power of the beam. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift attributable to the etalon.
Abstract:
The method and apparatus operates to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM). In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. The WTL is tuned to the ITU grid using an etalon and a gas cell having acetylene, hydrogen cyanide or carbon dioxide. Initially, the absolute transmission wavelengths of the WTL are calibrated by routing an output beam from the WTL through the etalon and through the gas cell while varying tuning parameters of the WTL to thereby generate an etalon spectrum and a gas absorption spectrum both as functions of the tuning parameters. The etalon and gas absorption spectra are compared, along with input reference information specifying gas absorption as a function of absolute wavelength, to determine the absolute transmission wavelength for the WTL as a function of the tuning parameters. The WTL is then tuned to align the transmission wavelength of the WTL to an ITU transmission grid line.
Abstract:
A monitored laser system includes a laser with a first mirror and an exit mirror. The laser also has a laser cavity defined at least in part by the first mirror and the exit mirror. Within the laser cavity is an active region that contains material that is capable of stimulated emission at one or more wavelengths such that laser light is emitted from the laser. A power source is coupled to the active region. A multiple reflectivity band reflector (MRBR) is coupled to at least a portion of the emitted laser light. The MRBR has at least first and second wavelength bands with reflectivity above a particular reflectivity separated by at least a third wavelength band having reflectivity below the particular reflectivity. A first photodiode is coupled to at least a portion of the filtered laser light and produces an output based on the amount and wavelength of light received. A means for adjusting the emitted wavelength of the laser toward a particular wavelength in one of the at least first, second, and third wavelength bands based at least in part on the output of the first photodiode.
Abstract:
A system and method is provided to calibrate a transmission laser, such as a widely tunable laser (WTL), within a dense wavelength division multiplexer (DWDM) for transmission through an optic fiber. The WTL is tuned to the ITU grid using an etalon and a gas cell. The absolute transmission wavelengths of the WTL are calibrated by routing a WTL output beam through the etalon and through the gas cell while varying tuning parameters of the WTL to generate an etalon spectrum and a gas absorption spectrum, both as functions of the tuning parameters. The etalon and gas absorption spectra are compared, along with input reference information specifying gas absorption as a function of absolute wavelength, to determine the absolute transmission wavelength for the WTL as a function of the tuning parameters. The WTL is then tuned to align the transmission wavelength of the WTL to an ITU transmission grid line.