摘要:
An optical scanning device includes a third fθ lens, an adjusting bar, a pressing portion, a columnar member, and a movement restraining section. The adjusting bar is disposed parallel with a longitudinal direction of the third fθ lens and has projections which are capable of pressing against the third fθ lens at plural points in the longitudinal direction of the third fθ lens. The pressing portion and the columnar member press the adjusting bar against the third fθ lens. The movement restraining section is configured to set the pressing portion and the columnar member in a first state in which the pressing portion and the columnar member are movable in a direction parallel with the longitudinal direction of the third fθ lens or in a second state in which the pressing portion and the columnar member are restrained from moving.
摘要:
An imaging lens good in mass-productivity, compact, low in manufacturing cost, good in aberration performance is provided by effectively correcting aberrations without greatly varying the variation of the thickness of a curing resin. An imaging device having such an imaging lens and a portable terminal are also provided. A third lens (L3) has a flat surface on the object side, a convex surface near the optical axis on the image side, and a concave aspheric surface around the peripheral portion within the region where a light beam passes. Therefore, it is possible to reduce the other optical aberrations such as distortion and simultaneously to design the imaging lens so that the astigmatism takes on a maximum value at the outermost portion. Hence, the resolutions at low to middle image heights are high. In addition, such a shape does not cause a large variation of the thickness of the third lens (L3) from the region along the axis to the periphery. Therefore, the thickness of the third lens (L3) can be small, and the material cost can be reduced.
摘要:
A surface-emitting laser array includes a plurality of surface-emitting laser devices arranged in an array. An optical system includes a plurality of optical devices to guide a light beam composed of lights emitted from the surface-emitting laser array to a target surface to be scanned. A light-intensity-control-device switching unit places one of light-intensity control devices having different light transmittances at a predetermined position in an optical path of the light beam.
摘要:
A scanning system including a conveyor unit and a revolver unit that respectively rotate around first and second parallel axes and cooperatively interact to continuously transfer collimated light along a light path between a fixed device (e.g., laser or image sensor) and an orbiting element (e.g., microscope objective or projection optics). The conveyor unit including first and second surfaces disposed to rotate in a fixed parallel relationship around the first axis such that collimated light is directed by the surfaces from a fixed light path portion to a parallel scanning light path portion that orbits the fixed path at a constant offset distance. The revolver unit including an orbiting element rotated around the second axis, which is collinear with the fixed light path portion, and the element orbits at a radius equal to the offset distance between the fixed and scanning light path portions.
摘要:
An optical scanning device includes: a light source including a plurality of light-emitting elements; a deflector that defects light beams output from the light source; a scanning optical system that condenses the light beams deflected on the deflector onto a surface to be scanned, and includes at least one resin scanning lens and at least one folding mirror disposed behind the at least one resin scanning lens; a light-receiving element to which part of the light beams, which is deflected on the deflector but not used for scanning the surface, enters not via the at least one folding mirror as light-amount monitoring light beams; and a controller that controls a driving signal for the light-emitting elements based on an output signal from the light-receiving element.
摘要:
In an image forming apparatus according to the invention, an optical beam scanning apparatus of an overillumination scanning optical system includes a laser, a pre-deflection optical system, a polygon mirror, and a post-deflection optical system, wherein the post-deflection optical system includes at least one optical element configured by allowing a resin to flow into a molding die through a gate opening provided in advance to the molding die and then molding the resin into a prescribed shape; and in the optical element, a side corresponding to aside of the gate opening through which the resin flows is provided to a light incidence side where the luminous flux enters into the polygon mirror.
摘要:
An optical scanning device includes a light source, a light deflector for deflecting and scanning a light beam from the light source, a scanning imaging optical system for imaging the light beam via the light deflector onto a scanned face, a light beam detecting device for detecting a position of the light beam, a separation optical system provided in the light beam detecting device for separating the light beam into a plurality of separation light beams in a sub-scanning direction, a plurality of light detectors provided in the light beam detecting device to be disposed in different positions in the sub-scanning direction, and a plurality of light receiving sections provided in the light detectors, respectively, at least one light receiving section provided in the light detector being disposed such that the end portion on a side for detecting the separation light beam has a predetermined angle to the end portion of the other light detector.
摘要:
A scanning optical system including an optical source configured to generate an ultra-short light pulse, a dispersion compensation system disposed such that the ultra-short light pulse travels through the dispersion compensation system, an optical deflector configured to rotate about an axis such that the ultra-short light pulse is deflected through a scan angle, and an f-theta scan lens having a group delay (GD) variation versus relative pupil height and group delay dispersion (GDD) variation versus the scan angle that are substantially minimized. The f-theta scan lens is disposed such that the ultra-short pulse is incident on the f-theta scan lens.
摘要:
An optical beam scanning apparatus according to the present invention includes a light source, a pre-deflection optical system, a light deflecting device, a post-deflection optical system, a first sensor configured to detect a part of the luminous fluxes deflected by the light deflecting device, one or plural first optical elements configured to be provided in the post-deflection optical system and act on the luminous fluxes deflected by all the deflection surfaces of the light deflecting device; and a second optical element having positive power in the sub-scanning direction configured to be provided in an optical path between any one of the first optical elements and the first sensor and act on the luminous fluxes deflected by all the deflection surfaces of the light deflecting device.
摘要:
F-theta lenses, included in scanning lens systems, are arranged on a main scanning plane facing an optical deflector and substantially linearly symmetrically on the main scanning plane with reference to a rotational center of the optical deflector. Each f-theta lens has a no-power portion in the main scanning direction. Synchronization-detecting light passes through the no-power portion of the f-theta lens, thus enabling reduction in color shift due to temperature variation in an image forming apparatus without increasing the cost and complexity in controlling color shift.