Abstract:
In accordance with at least one aspect of this disclosure, an actuation system for a guided munition, includes a reservoir disposed in a guided munition body housing a compressible fluid in a compressed state, a fluid path connecting the reservoir in fluid communication with a heat exchange volume, a throttling orifice disposed in the fluid path configured to expand the compressible fluid, and an actuation path connecting the heat exchange volume in fluid communication with a moveable component. The actuation path can be configured to supply pneumatic pressure to the moveable components.
Abstract:
A raw material gas liquefying device includes a feed line; a refrigerant circulation line; and a controller. In a refrigerant liquefaction route, a refrigerant flows through a compressor, a heat exchanger, a circulation system JT valve, a liquefied refrigerant storage tank, and the heat exchanger, and returns to the compressor. In a cryogenic energy generation route, the refrigerant flows through the compressor, the heat exchanger, an expansion unit, and the heat exchanger, and returns to the compressor. The controller determines if a refrigerant storage tank liquid level is within an allowable range, manipulates a feed system JT valve opening rate to control refrigerant temperature at the high-temperature-side refrigerant flow path exit side of the heat exchanger, and manipulates the opening rate of the feed system JT valve to control the refrigerant storage tank liquid level so that the refrigerant storage tank liquid level falls into the predetermined allowable range.
Abstract:
Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position.The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler.The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded.The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
Abstract:
A low-temperature device for separating and purifying gas based on a small-sized low-temperature refrigerating machine includes a primary, secondary and quaternary heat exchanger, at least one small-sized low-temperature refrigerating machine, and at least one liquid collecting tank. The small-sized low-temperature refrigerating machine includes a first cold head and a second cold head, the secondary heat exchanger is provided on the first cold head to form a primary cold head heat exchanger, the quaternary heat exchanger is provided on the second cold head to form a secondary cold head heat exchanger, a mixed gas outlet is connected to an inlet of the primary cold head heat exchanger. By using primary and secondary cold heads of the small-sized low-temperature refrigerating machine as cold sources, gases having different condensing temperature are liquefied and solidified separately, and two or more gases can be separated and purified at a lower cost.
Abstract:
A microcooler includes a substrate with a first and second microchannel and an orifice disposed between, in fluid communication with both. A pair of electrodes is in a vicinity of the orifice. An electrical resistive heating material is in electrical communication with the electrodes and is in thermal contact with a fluid in the vicinity of the orifice. A system includes the microcooler and a voltage source to apply a voltage across the electrodes, which induces sufficient heating in the heating material to disassociate something clogging the orifice, without significant damage to the heating material. Some systems include a sensor configured to detect an effect of clogging at the orifice. A processor is configured to receive sensor output from the sensor, and if there is an effect of clogging, then cause the voltage to be applied across the electrodes.
Abstract:
Systems, methods, and devices for integrated detector cooler assemblies (IDCAs) and multi-circuit cryostats are discussed herein. Solutions include using cryostats with multiple cooling circuits. Some cryostat variations may include a rapid cooldown circuit and a temperature maintenance circuit. In some cases, the temperature maintenance circuit may be a closed-loop circuit run by a compressor instead of an open-loop circuit run on a pressurized gas bottle/cartridge. Variations of a cryostat may also include a gas expander portion that replaces the coldfinger of typical IDCAs. Further variations of cooling circuits may include circuits that perform reverse-flow heat exchange to pre-cool incoming refrigerant and also cooling circuits that have heat bridges disposed thereon to assist in such heat exchange.
Abstract:
Systems, methods, and devices for integrated detector cooler assemblies (IDCAs) and multi-circuit cryostats are discussed herein. Solutions include using cryostats with multiple cooling circuits. Some cryostat variations may include a rapid cooldown circuit and a temperature maintenance circuit. In some cases, the temperature maintenance circuit may be a closed-loop circuit run by a compressor instead of an open-loop circuit run on a pressurized gas bottle/cartridge. Variations of a cryostat may also include a gas expander portion that replaces the coldfinger of typical IDCAs. Further variations of cooling circuits may include circuits that perform reverse-flow heat exchange to pre-cool incoming refrigerant and also cooling circuits that have heat bridges disposed thereon to assist in such heat exchange.
Abstract:
In an electron paramagnetic resonance spectrometer, a closed cycle cryocooler is used to cool gaseous helium, which is then circulated around a sample to cool the sample by direct convection. Since the sample is not mechanically connected to the refrigerator, no vibrations are transmitted from the refrigerator to the sample and the sample can be quickly removed and replaced. The cooled helium can be passed through a Joule-Thomson expansion device before circulating the cooled helium around the sample to further cool the helium. In addition, a vacuum pump can be connected to the helium outlet after circulating the cooled helium around the sample to increase the pressure differential across the Joule-Thomson expansion device and further cool the helium. In order to raise the temperature of the cooled helium, a heater can be placed about the cooled helium line upstream from the sample.
Abstract:
A catheter-based system for performing a cryoablation procedure uses a precooler to lower the temperature of a fluid refrigerant to a sub-cool temperature (−40° C.) at a working pressure (400 psi). The sub-cooled fluid is then introduced into a supply line of the catheter. Upon outflow of the primary fluid from the supply line, and into a tip section of the catheter, the fluid refrigerant boils at an outflow pressure of approximately one atmosphere, at a temperature of about −88° C. In operation, the working pressure is computer controlled to obtain an appropriate outflow pressure for the coldest possible temperature in the tip section.
Abstract:
A laser system thermal management system includes a laser gain assembly and a thermal management assembly. The laser gain assembly includes a laser gain medium and may include laser pump diodes. The thermal management system includes a high pressure gas tank connected to an open-cycle Joule-Thompson refrigerator. Cooled and partially liquefied gas is introduced into a reservoir. The reservoir may be in good direct thermal contact with the laser gain assembly or via a closed loop recirculating fluid heat exchanger. The heat generated by the laser gain assembly is removed by heat exchange with the cooled gas and condensate in the reservoir either by direct thermal contact or via the recirculating heat exchanger loop. Gas evaporating in the reservoir is vented.