Abstract:
An immunotoxin for use in the treatment of leishmaniasis A wherein the immunotoxin comprises a portion which is specifically binding to the cellular surface receptor CD64 as a component A and a cell killing portion as a component B, wherein the cell killing portion alters the function, gene expression, or viability of a cell thereby killing Leishmania-infected macrophages and by this eliminates Leishmania.
Abstract:
The present invention relates to methods and compositions for treating a subject comprising destroying diseased cells in the subject. The methods comprise obtaining a population of cells from a subject and determining the activity of at least one disease marker gene within the population of the obtained cells. A polynucleotide molecule that encodes a polypeptide that is lethal to the cells is then introduced into the cells, where the expression of the lethal polypeptide is controlled by the promoter of at least one of the disease marker genes previously identified. After introduction of the polynucleotide, the cells are treated with conditions to induce expression of the lethal polypeptide to destroy the cells that are expressing the disease marker gene(s). After destruction of the diseased cells, the remaining live cells, which did not express the lethal polypeptide to an extent necessary to kill the cells, are separated from the dead cells, and the live cells are restored to the subject.
Abstract:
The invention is directed to methods and compositions for cell-based targeted delivery of predetermined compounds to a population of target cells. In some embodiments, methods of the invention include providing cytotoxic lymphocytes genetically modified to produce and sequester in lytic granules fusion proteins comprising a granzyme, or other effector agent, and a predetermined protein, so that upon specific contact of the cytotoxic lymphocytes with the target cells, the granzyme-perforin pathway of the cytotoxic lymphocytes is activated, leading to the delivery of the fusion protein to the cytosols of the target cells.
Abstract:
A fusion protein for use as an immunogen enhancer for enhancing antigen-specific T cell responses is disclosed. The fusion protein comprises: (a) an antigen-presenting cell (APC)-binding domain or a CD91 receptor-binding domain; (b) a protein transduction domain; and (c) an antigen of a pathogen, wherein the APC-binding domain or the CD91 receptor-binding domain is located at the N-terminus of the fusion protein, and the antigen of the pathogen is located at the C-terminus of the protein transduction domain. The protein transduction domain is selected from the group consisting of: (i) a fusion polypeptide, comprising a T cell sensitizing signal-transducing peptide, a linker, and a translocation peptide; (ii) a T cell-sensitizing signal-transducing peptide; and (iii) a translocation peptide of 34-112 amino acid residues in length.
Abstract:
The invention generally relates to compositions and methods for treating cancer. In certain embodiments, the invention provides methods that involve treating a cancer in a patient in which cancerous cells overexpress epidermal growth factor receptor as compared to non-cancerous cells. The methods involve administering a first composition including anthrax protective antigen modified to bind an epidermal growth factor receptor of a cell, and administering a second composition including anthrax lethal factor N-terminus fused to a catalytic domain of Diphtheria Toxin A. Binding of anthrax lethal factor N-terminus to anthrax protective antigen results in internalization of Diphtheria Toxin A into the cancerous cell, which triggers apoptosis by inactivation of critical elongation factors.
Abstract:
The instant invention provides methods and compositions for modulation of the immune system. Specifically, the present disclosure provides methods and compositions for increasing T cell mediated immune response useful in the treatment of cancer and chronic infection.
Abstract:
The instant invention provides methods and compositions for modulation of the immune system. Specifically, the invention provides methods and compositions for increasing T cell mediated immune response useful in the treatment of cancer and chronic infection.
Abstract:
The present invention relates to Shiga toxin effector polypeptides with reduced antigenic and/or immunogenic potential. Immunogenicity can be a limitation for the repeated administration to mammals of proteins and polypeptides derived from Shiga toxins. The Shiga toxin effector polypeptides of the present invention have uses as components of therapeutics, diagnostics, and immunization materials. The cytotoxic proteins of the present invention have uses for selective killing of specific cell types and as therapeutics for the treatment of a variety of diseases, including cancers, immune disorders, and microbial infections. The proteins of the present invention also have uses for detecting specific cell types, collecting diagnostic information, and monitoring the treatment of a variety of diseases, such as, e.g., cancers, immune disorders, and microbial infections.
Abstract:
The disclosure provides targeted cargo proteins that are useful for targeting cancer stem cells, and methods of their use in treating cancer.
Abstract:
Pseudomonas exotoxin A or “PE” is a 66kD, highly potent, cytotoxic protein secreted by the bacterium Pseudomonas aeruginosa. Various forms of PE have been coupled to other proteins, such as antibodies, to generate therapeutically useful cytotoxin conjugates that selectively target cells of a desired phenotype (such as tumor cells). In the present invention, peptides spanning the sequence of an approximately 38kD form of Pseudomonas exotoxin A protein were analyzed for the presence of immunogenic CD4+ T cell epitopes. Six immunogenic T cell epitopes were identified. Residues were identified within each epitope for introduction of targeted amino acid substitutions to reduce or prevent immunogenic T-cell responses in PE molecules which may be administered to a heterologous host.