Abstract:
An image projecting device is presented. The device comprises an SLM pixel arrangement; and two lens arrays. The lens arrays are respectively located at opposite surfaces of the SLM pixel arrangement and are integral with the SLM pixel arrangement, forming together with the SLM pixel arrangement a common SLM unit. Each lens in one array and a respective opposite lens in the other array are associated with a corresponding one of the pixels. Each of the lens arrays is implemented in a polymer spacer and is either spaced from the corresponding surface of the opposite surfaces of the pixel arrangement a distance substantially not exceeding 50 μm or is in physical contact with the respective surface. The device also comprises a light source system operable to produce an incident light beam of a predetermined cross section corresponding to the size of an active surface of the SLM pixel arrangement; and a magnification optics.
Abstract:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Abstract:
A polarizing beam-splitter apparatus, comprising: an input port through which an input beam of lights is provided; a first polarizing beam splitter that receives the input beam and splits the beam into at least a first and second beam, said first beam having substantially a first desired polarization state and said second beam having a second polarization state orthogonal to said first polarization state but possibly admixed with the first polarization state; and an optical system that receives the second beam and provides a third beam having the second polarization state and a smaller admixture of the second polarization state than the second beam.
Abstract:
This application describes an optical switching method for selectively directing an input beam to at least one of two output channels. The input beam impinges on a polarizing beam splitting surface, splitting the input beam into two beam components of different polarizations propagating along different optical paths. These beam components then pass through a controllable polarization rotating medium which selectively affects the polarization of each of the beam components. The beam components are then directed back onto the polarizing beam splitting surface again, producing at least one output beam which propagates toward at least one selected output channel, depending on the state of the medium. The polarizing beam splitting surface is fabricated on a block of the controllable polarization rotating medium, and the input beam also passes through the medium before being split into two beam components by the polarizing beam splitting surface.
Abstract:
A super-resolving imaging apparatus employs diffractive optical elements placed on the imaging lens. This element, and the use of a modified Scheimpflug arrangement allow the conversion of degrees of freedom in one axis of a field of view to a larger degree of freedom in another axis in order to obtain a high resolution image with a wide depth of focus and large field of view. Replicas created by the diffractive elements are mutually shifted by subpixel amounts, and are combined using a Gabor transform, which is facilitated by a spatial mask placed over the detector array. The apparatus is suitable for performing distance estimation on an object within the field of view.
Abstract:
A system and method are presented for use in monitoring one or more conditions of a subject's body. The system includes a control unit which includes an input port for receiving image data, a memory utility, and a processor utility. The image data is indicative of data measured by a pixel detector array and is in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern. The memory utility stores one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility is configured and operable for processing the image data to determine one or more corresponding body conditions; and generating output data indicative of the corresponding body conditions.
Abstract:
An optical coupler includes a plurality of tapers, each of the taper-bases arranged substantially in a first plane to form a base of the optical coupler for connecting to a first optical waveguide, and the taper-tips arranged substantially non-overlapping in a second plane corresponding to a coupling facet for coupling with a second optical waveguide. This multi-taper coupler overcomes the energy loss of conventional techniques, allowing optical coupling between a variety of optical devices including optical fibers, waveguides, diodes, and switches. The multi-taper has increased information transmission efficiency, reduced loss of signal strength between coupled products, and is more robust to damage of the coupler, and the coupling area is larger than conventional couplers thereby reducing coupling complexity and increasing coupling probability.
Abstract:
An ophthalmic lens is presented. The lens includes a toric optical zone and a phase-affecting, non-diffractive optical element for extending depth of focus of imaging.
Abstract:
An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
Abstract:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.