Abstract:
A wireless power supply system and a self adaptive regulation method thereof. The method includes the following steps: detecting an operating mode of an electric power sending unit (210); judging whether the electric power sending unit coincides with a normal operation condition of the wireless power supply system (200) according to the detected operating mode; determining according to a judging result whether to regulate a main oscillating frequency of an oscillating circuit (213) or not, so as to make the main oscillating frequency of the oscillating circuit be maintained between the resonant frequency of a sending coil (214) and the resonant frequency of a receiving coil (221). The main oscillating frequency of the oscillating circuit is regulated automatically, so as to make the main oscillating frequency be close to the resonant frequency of coils in the electric power sending unit and a receiving unit (220) all the time and make the system maintain a stable power output to ensure the normal operation of the wireless power supply system.
Abstract:
In one example, a video coder, such as a video encoder or a video decoder, is configured to code a first set of one or more depth range values for a first set of video data, wherein the first set of one or more depth range values have respective first precisions, code a second set of one or more depth range values for a second set of video data, wherein the second set of one or more depth range values have respective second precisions different than the respective first precisions, and code at least a portion of the second set of video data using the second set of one or more depth range values. In this manner, the video coder may update precisions (e.g., numbers of bits) used to represent depth range values for coding multiview plus depth video data.
Abstract:
A method and system for recognizing chemical names in a Chinese document. The method includes: receiving a Chinese document including chemical names; recognizing chemical name segments in the document; recognizing non-chemical name segments in the document; and combining the chemical name segments to get chemical names based on the recognized chemical name segments and non-chemical name segments. Specific embodiments of the present invention can effectively recognize chemical names from a chemical document.
Abstract:
This disclosure describes techniques for coding 3D video block units. In one example, a video encoder is configured to determine a first real-world depth range for a first depth view component comprising a reference view component, determine a second real-world depth range for a second depth view component comprising a current view component, wherein the current view component is predicted relative to the reference view component, determine a predictive block for a portion of the current view component from the reference view component, adjust values of the predictive block based on a difference between the first real-world depth range and the second real-world depth range, and predict the portion of the current view based on the adjusted values of the predictive block.
Abstract:
A method, apparatus, and service station for providing a location-based transportation information service. The method for providing a location-based traffic information service includes receiving a traffic message indicating a traffic condition, determining a traffic information service station matching the traffic message in terms of location, and dispatching the traffic message to the matched traffic information service station such that the traffic message is broadcasted within the service range of the matched traffic information service station. Corresponding apparatus and traffic information service station are also disclosed. According to embodiments of the present invention, a location-specific real-time traffic information service can be provided.
Abstract:
Aspects of this disclosure relate to a method of coding video data. In an example, the method includes identifying a first block of video data in a first temporal location from a first view, wherein the first block of video data is associated with a first temporal motion vector. The method also includes determining, when a second motion vector associated with a second block of video data comprises a temporal motion vector and the second block is from a second view, a motion vector predictor for the second motion vector based on the first temporal motion vector. The method also includes coding prediction data for the second block using the motion vector predictor.
Abstract:
A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
Abstract:
This disclosure describes techniques for coding 3D video block units. In one example, a video encoder is configured to receive one or more texture components from at least a portion of an image representing a view of three dimensional video data, receive a depth map component for at least the portion of the image, code a block unit indicative of pixels of the one or more texture components for a portion of the image and the depth map component. The coding comprises coding the depth map component relative to at least one of the texture components, and signalling an attribute of the depth map component relative to the one or more texture components.
Abstract:
The example techniques described in this disclosure are generally related to decoded picture buffer management. One or more pictures stored in the decoded picture buffer may be usable for prediction, and others may not. Pictures that are usable for prediction may be referred to as reference pictures. The example techniques described herein may determine whether a reference picture, that is currently indicated to be usable for inter-prediction, should be indicated to be unusable for inter-prediction.
Abstract:
A system for classifying documents in a collection of documents according to their intended readerships includes: a computer configured to select a document in the collection of documents; and a computer to determine a characteristic of the selected document, the characteristic being: misleading when the document includes one or more features that are determined to be for a purpose other than reading the document; commercial when the document includes features that are presented for a commercial purpose; or personal when the document includes features of a personal opinion. A computer classifies the selected document as misleading, commercial, or personal according to its determined characteristic; and a computer repeats the steps of select document, determines a characteristic of the selected document, and classifies the selected document for additional documents in the collection. At least some documents are classified as misleading, some as commercial, and at least some as personal.