Abstract:
There is provided a piezoelectric actuator including: a piezoelectric member having a multilayer structure; an external electrode formed on an outer surface of the piezoelectric member; and an intermediate electrode formed between layers of the piezoelectric members and having an area smaller than that of the external electrode.
Abstract:
Disclosed herein is provided with a touch sensor, including: a window substrate; a first bezel layer formed at an edge portion of the window substrate and formed of at least one layer; and a resin layer disposed on the first bezel layer and the window substrate. The touch sensor further includes a second bezel layer disposed on the resin layer, at a position corresponding to the first bezel layer and the resin layer is made of a transparent material having a refractive index lower than that of the first bezel layer and the second bezel layer. As described above, the plurality of bezel layers and the resin layer are stacked together to form a difference in refractive index, thereby implementing a clear color even by the thinner bezel layer.
Abstract:
A piezoelectric actuator includes upper and lower electrodes providing driving voltages and a piezoelectric film formed between the upper and lower electrodes and providing a driving force to ink in a plurality of pressure chambers formed on an inkjet print head, respectively. The piezoelectric film may include a plurality of basin parts individually formed on respective tops of the plurality of pressure chambers and a large-area part connected to the plurality of basin parts, respectively, at one ends of the plurality of basin parts and formed as a single body. The large-area part may include an etching groove formed on an extended line of a basin line partitioning the basin parts.
Abstract:
A bulk acoustic resonator package includes a substrate, a cap, and first and second bulk acoustic resonators each including a first electrode, a piezoelectric layer, and a second electrode stacked in a direction in which the substrate and the cap face each other, and disposed between the substrate and the cap, wherein the first and second bulk acoustic resonators form a bandwidth based on first and second resonant frequencies different from each other and first and second antiresonant frequencies different from each other, a difference between the first and second resonant frequencies exceeds 200 MHz, the first bulk acoustic resonator is disposed closer to the substrate than to the cap, and the second bulk acoustic resonator is disposed closer to the cap than to the substrate.
Abstract:
A bulk acoustic resonator filter includes a plurality of bulk acoustic resonators connected between first and second radio frequency (RF) ports to form a frequency band, wherein each of the plurality of bulk acoustic resonators includes a first electrode, a second electrode, and a piezoelectric layer disposed between the first and second electrodes, the plurality of bulk acoustic resonators include first and second bulk acoustic resonators having different differences between a resonant frequency and an antiresonant frequency, and different ratios of a thickness of the piezoelectric layer to a total thickness of the first and second electrodes, and/or different thicknesses of the piezoelectric layer.
Abstract:
An acoustic resonator package includes: a substrate; an acoustic resonator disposed on the substrate; a cap disposed on the substrate and the acoustic resonator; and a bonding portion bonding the substrate and the cap to each other. The cap includes a central portion accommodating the acoustic resonator, and an outer portion disposed outside of the central portion and having a bonding surface. The outer portion includes protrusions in contact with the bonding portion, and at least one trench disposed between the protrusions. The acoustic resonator package further includes a first protective layer and a second protective layer, the first protective layer and the second protective layer being disposed on a region of the bonding surface formed on each of the protrusions.
Abstract:
An acoustic resonator filter is provided. The acoustic resonator filter includes a rear filter electrically connected between a front port and a rear port, through which a radio frequency (RF) signal passes, the rear filter including at least one film bulk acoustic resonator (FBAR); and a front filter electrically connected between the front port and the rear filter and including at least one solidly mounted resonator (SMR).
Abstract:
A bulk acoustic wave resonator includes: a first electrode; a piezoelectric layer disposed on at least a portion of the first electrode; and a second electrode disposed on the piezoelectric layer. The piezoelectric layer contains a dopant, and a value of [a thickness (nm) of the piezoelectric layer x a concentration (at %) of the dopant]/100 is less than or equal to 80.
Abstract:
A bulk-acoustic wave resonator may include: a substrate; a resonator unit including a first electrode disposed on the substrate, a piezoelectric layer disposed on the first electrode, and a second electrode disposed on the piezoelectric layer; and a protective layer disposed on a surface of the resonator unit. The protective layer is formed of a diamond film, and a grain size of the diamond film is 50 nm or more.
Abstract:
A bulk-acoustic wave resonator may include: a substrate; a resonance portion; a first electrode disposed on the substrate; a piezoelectric layer disposed on the first electrode in the resonance portion; a second electrode disposed on the piezoelectric portion in the resonance portion; and a seed layer disposed in a lower portion of the first electrode. The seed layer may be formed of titanium (Ti) having a hexagonal close packed (HCP) structure, or an alloy of Ti having the HCP structure. The seed layer may have a thickness greater than or equal to 300 Å and less than or equal to 1000 Å, or may be thinner than the first electrode.