Abstract:
A display device includes: a substrate; a first conductive layer including a lower pattern disposed on the substrate; an active layer including a first active pattern disposed on the first conductive layer; and a second conductive layer including a first gate electrode disposed on the active layer, wherein the first gate electrode overlaps a first channel region included in the first active pattern, the lower pattern overlaps the first active pattern, and the first active pattern does not cross an edge of the lower pattern.
Abstract:
An organic light emitting diode display including: a data wiring that includes a main data line disposed in a display area and a first data line disposed in a peripheral area; a driving voltage wiring that includes a main driving voltage line disposed in the display area and a first driving voltage line that is connected with the main driving voltage line and disposed in the peripheral area while extending in a first direction; and a driving low-voltage wiring that includes a cathode extending to the peripheral area while overlapping the display area, and a plurality of first driving low-voltage connection portions that are connected with the cathode and disposed in the peripheral area, wherein each of the plurality of first driving low-voltage connection portions comprises a wiring portion extended in the first direction and a pad portion electrically connected with the wiring portion.
Abstract:
According to an exemplary embodiment, an organic light emitting diode display includes: a substrate; a semiconductor layer; a first gate insulating layer disposed on the oxide semiconductor layer; a first gate layer disposed on the first gate insulating layer; a first interlayer insulating layer disposed on the first gate layer; a first data layer disposed on the first interlayer insulating layer; a second interlayer insulating layer disposed on the first data layer; a driving voltage line and a driving low voltage line disposed on the second interlayer insulating layer and separated from each other; an upper insulating layer covering the driving voltage line and the driving low voltage line; and an anode disposed on the upper insulating layer and overlapping the driving voltage line or the driving low voltage line.
Abstract:
A touch sensor includes: a plurality of first sensor electrodes, each including first sensor patterns extending in a first direction, and being arranged in a second direction; a plurality of second sensor electrodes, each including second sensor patterns extending in the second direction and being arranged in the first direction; an opening in a touch active region separated from the first and second sensor electrodes; a first connection pattern disposed around but not in the opening, the first pattern electrically connecting first opening sensor patterns of the first sensor patterns that are adjacent to respective portions of the opening in the second direction; first lines respectively connected to portions of the first sensor electrodes, the first lines extending to a periphery of the touch active region; and second lines respectively connected to portions of the second sensor electrodes, the second lines extending to the periphery of the touch active region.
Abstract:
A display device includes a substrate that includes a display area and a non-display area. A driver is disposed in the non-display area, and includes a driver circuit including a transistor and a driver control line transmitting a control signal to the driver circuit. A static electricity blocking line is disposed in the non-display area and circumscribes the display area. The static electricity blocking line at least partially overlaps the driver.
Abstract:
A display device includes a substrate including a plurality of light-emitting devices, a first color filter, a second color filter, and a third color filter that overlap one of the light-emitting devices, and a first color converting layer that overlaps the first color filter, a second color converting layer that overlaps the second color filter, and a transmission layer that overlaps the third color filter. A plurality of the first color filters, a plurality of the second color filters, and a plurality of the third color filters are arranged in a first direction. A gap between adjacent second color filters in a second direction overlaps the first color filter in the first direction.
Abstract:
In a scan driver including a plurality of stages configured to supply scan signals to scan lines, the scan driver includes: an i−1th stage configured to supply an i−1th scan signal to an i−1th scan line while controlling a node Qi−1 (i is a natural number) in response to a first clock signal, a third clock signal, and a control voltage; an ith stage configured to supply an ith scan signal to an ith scan line while controlling a node Qi in response to a second clock signal, a fourth clock signal, and the control voltage; and a controller connected to the i−1th stage and the ith stage, and configured to supply the control voltage.
Abstract:
A stage includes an output, first and second controllers, and first and second inputs. The output supplies a scan signal to a first output terminal and a carry signal to a second output terminal based on first and second node voltages and a first clock signal supplied to a first input terminal. The first controller controls a third node voltage based on a voltage of the second output terminal. The second controller controls the second node voltage based on the first clock signal supplied to the first input terminal and the third node voltage. The first input controls the first and third node voltages based on a carry signal of a previous stage supplied to a second input terminal. The second input controls the first and third node voltages based on the second node voltage and a carry signal of a next stage supplied to a third input terminal.
Abstract:
In a scan driver including a plurality of stages configured to supply scan signals to scan lines, the scan driver includes: an i−1th stage configured to supply an i−1th scan signal to an i−1th scan line while controlling a node Qi−1 (i is a natural number) in response to a first clock signal, a third clock signal, and a control voltage; an ith stage configured to supply an ith scan signal to an ith scan line while controlling a node Qi in response to a second clock signal, a fourth clock signal, and the control voltage; and a controller connected to the i−1th stage and the ith stage, and configured to supply the control voltage.
Abstract:
A passivation layer solution composition is provided. A passivation layer solution composition according to an exemplary embodiment of the present invention includes an organic siloxane resin represented by Chemical Formula 1 below. In Chemical Formula 1, R is at least one substituent selected from a saturated hydrocarbon or an unsaturated hydrocarbon having from 1 to about 25 carbon atoms, and x and y may each independently be from 1 to about 200, and wherein each wavy line indicates a bond to an H atom or to an x siloxane unit or a y siloxane unit, or a bond to an x siloxane unit or a y siloxane unit of another siloxane chain comprising x siloxane units or y siloxane units or a combination thereof.