Abstract:
In a data driving apparatus, a DAC converts digital data output from a holding latch into an analog data voltage. An operational amplifier operates as a buffer which outputs the analog data voltage of the DAC to the signal line during a display period and operates as a comparator which compares the voltage of the signal line with the analog data voltage of the DAC during a sensing period. In addition, a sensing controller controls the holding latch to change the data stored in the holding latch according to a comparison value of the comparator.
Abstract:
A display apparatus includes a display panel, a gate driver, a data driver and a coupling voltage generator. The display panel includes a plurality of pixels. The gate driver provides a gate signal to the display panel. The data driver provides a data voltage to the display panel. The coupling voltage generator provides a coupling voltage to the display panel. The coupling voltage has a plurality of levels.
Abstract:
Each pixel of a display device includes: an organic light emitting diode between a first and a second power supply; a first transistor to transmit a drive current based on data signals; a second transistor to couple a gate electrode of the first transistor to the data line in response to a scan signal; a first capacitor between the first power supply and the gate electrode of the first transistor; a light receiving element coupled to a third power supply; a second capacitor between the light receiving element and a fourth power supply; a third transistor between the data line and a first electrode of the second capacitor, the third transistor including a gate electrode coupled to a selection signal line; and a fourth transistor between the fourth power supply and the third transistor, the fourth transistor including a gate electrode coupled to the first electrode of the second capacitor.
Abstract:
An organic light emitting display can improve display quality by securing a charging time of a data signal. An organic light emitting display includes pixels, a data driver, a plurality of data drivers, and a control signal generator. The pixels are respectively positioned at areas defined by scan lines and data lines. The data driver sequentially supplies i (i is a natural number greater than or equal to 2) data signals to each of output lines during one horizontal period. The plurality of data dividers are respectively coupled to the output lines, and supply the i data signals to i data lines. The control signal generator sequentially supplies i control signals to the data dividers, corresponding to the i data signals. In the organic light emitting display, the data dividers supply a corresponding data signal to each data line during the one horizontal period.
Abstract:
An organic light-emitting display apparatus including emitting pixels including drivers for displaying gradation by making a light-emitting device selectively emit light according to a logic level of a data signal transmitted to each of the sub-fields forming a frame, and dummy pixels coupled to a repair line that is coupled to a light-emitting device of a first emitting pixel from among the plurality of the emitting pixels, wherein the dummy pixels include a first dummy driver for making the light-emitting device of the first emitting pixel emit light by charging the repair line when a data signal having a first logic level is transmitted, a second dummy driver for discharging the repair line when a data signal having a second logic level opposite to the first logic level is transmitted, and a boost capacitor coupled to the repair line and for controlling a charging/discharging speed of the repair line.
Abstract:
A thin film transistor is disclosed. In one aspect, the thin film transistor includes a substrate, a semiconductor layer formed on the substrate, and a first gate electrode substantially overlapping the semiconductor layer with a gate insulating layer interposed therebetween. The thin film transistor also includes a second gate electrode substantially overlapping the first gate electrode with an interlayer insulating layer interposed therebetween, and a source electrode and a drain electrode electrically connected to the semiconductor layer, wherein the first gate electrode is electrically connected to the second gate electrode.
Abstract:
A pixel circuit for an organic light emitting diode (OLED) display is disclosed. One inventive aspect includes an organic light emitting diode, a first transistor, a storage unit, a second transistor and a third transistor. The first transistor controls the amount of current flowing from a first power source coupled to a second power source via a second node and the organic light emitting diode in response to a voltage at a first node. The storage unit is connected to a data line, and stores a data signal from the data line. The second transistor is connected to a fourth node and the first node and is turned on when a second control signal is supplied. The third transistor is connected to the first node and a third node and is turned on when a third control signal is supplied.