Abstract:
Examples described herein relate to managing reselection for a wireless communication device having a first subscription associated with a first Radio Access Technology (RAT) and a second subscription associated with a second RAT, including determining an occurrence of a barring procedure that bars a target cell or a target frequency for the first subscription for a barring duration and deprioritizing the target cell or the target frequency for the barring duration on the second subscription
Abstract:
Embodiments include systems and methods for managing tune-way in a multi-subscription communication device. A processor of a multi-subscription communication device may determine a first signal strength of a first cell signal and a second signal strength of a second cell signal. The processor may perform a tune-away procedure to a weaker of the first cell signal and the second cell signal. Embodiments may include determining signal strengths of each component carrier of the first cell signal and the second cell signal.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a transmitter configured to transmit data at a first frequency on a first radio access technology. The apparatus comprises a receiver configured to receive data at the first frequency on the first radio access technology. The apparatus comprises a processor configured to tune the transmitter to the first frequency associated with the first radio access technology. The processor is configured to tune the receiver from the first frequency to a second frequency associated with a second radio access technology while the transmitter remains tuned to the first frequency associated with the first radio access technology. The processor is further configured erase data to be transmitted for the first radio access technology from at least one transmission channel slot when the first frequency and the second frequency satisfy a predetermined combination of frequencies.
Abstract:
Various embodiments include methods implemented on a mobile communication device for sharing network information among subscriptions when a first subscription is in a data communication session and a second subscription is in an idle mode. The methods may include determining whether the first subscription and the second subscription share a network operator and are camped on a same base station. If so, the first subscription may receive network information from the base station and store the network information in a shared memory of the mobile communication device that can be accessed by the second subscription. The second subscription may then perform some idle mode operations using the network information stored in the shared memory.
Abstract:
Various embodiments implemented on a mobile communication device provide methods for skipping power measurements of frequency bands included in a list of frequency bands received from a first subscription's network to conserve power and to increase the likelihood of avoiding a coexistence event between a first subscription and a second subscription. Specifically, a processor of the mobile communication device may order the list of frequency bands such that non-interfering frequency bands are ordered before interfering frequency bands. The processor may then take power measurements of frequency bands in the list, in order, until the processor determines that a power measurement has satisfied a minimum power threshold. In response to such a determination, the device processor may report the power measurement that satisfies the minimum power threshold to the first subscription's network and may not take any more power measurements of the remaining frequency bands in the list.
Abstract:
Methods and devices are disclosed for managing multiple-input multiple-output (MIMO) mode on a multi-SIM wireless device. The wireless device may determine whether all of the SIMs are in an active state, and identify each active SIM and each RF resource that is associated with an inactive SIM if less than all of the SIMs are in the active state. The wireless device may determine whether at least one identified active SIM and at least one identified RF resource satisfy MIMO criteria. Upon determining that at least one identified active SIM and at least one identified RF resource satisfy the MIMO criteria, the wireless device may allocate, for use in MIMO operations, the at least one identified RF resource to a protocol stack associated with a selected one of the at least one identified active SIM.
Abstract:
Aspects of the present disclosure relate to a multimode user equipment (UE) that when suffering a power crunch, can intelligently reselect to another RAT to extend the battery life of the UE. The reselected RAT has a lower specified maximum transmit power relative to the currently attached RAT. Therefore, the UE may reduce its battery drain to extend its service time per charge when a call is made utilizing the reselected RAT. The UE intelligently selects the RAT that will likely consume less uplink transmit power to communicate with a base station in order to conserve battery power in a poor coverage area, when the UE is experiencing a power crunch condition.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a transmitter configured to transmit data at a first frequency on a first radio access technology. The apparatus comprises a receiver configured to receive data at the first frequency on the first radio access technology. The apparatus comprises a processor configured to tune the transmitter to the first frequency associated with the first radio access technology. The processor is configured to tune the receiver from the first frequency to a second frequency associated with a second radio access technology while the transmitter remains tuned to the first frequency associated with the first radio access technology. The processor is further configured erase data to be transmitted for the first radio access technology from at least one transmission channel slot when the first frequency and the second frequency satisfy a predetermined combination of frequencies.
Abstract:
The various embodiments provide methods for implementing a forced reselection strategy after causing colliding subscriptions to perform reselection to neighboring cells. In various embodiments, the MSMS communication device may undo the effects of forced reselection in certain situations when continuing to employ forced reselection may be ineffective. In other embodiments, the MSMS communication device may force reselecting subscriptions to reselect to neighboring cells in a paging group based on the page timings of the neighboring cells. Thus, the various embodiments may increase the performance of the colliding subscriptions and may enhance the user's overall experience.
Abstract:
Methods, systems, and devices for wireless communication are described in relation to a Multiple Subscriber Identify Module (MSIM) user equipment (UE). The UE associated with multiple network subscriptions may determine a first timing of a first set of paging occasions associated with a first network subscription of the multiple network subscriptions, wherein the first network subscription is associated with a first network; determine a second timing of a second set of paging occasions associated with a second network subscription of the multiple network subscriptions, wherein the second network subscription is associated with a second network; compare the first timing and the second timing; detect a paging time adjustment condition based on the comparing; and based on the detecting, transmit to the first network, the second network or both a random access signal using a random access resource configured to convey a paging time adjustment request.