Frequency hopping in an uplink control channel

    公开(公告)号:US11057871B2

    公开(公告)日:2021-07-06

    申请号:US16045535

    申请日:2018-07-25

    Abstract: Methods, systems, and devices are described for wireless communications. A wireless device may receive an allocation of uplink resources for an uplink transmission of uplink control information (UCI) during a long physical uplink control channel (PUCCH), which may range from four to fourteen symbol periods in length. The wireless device may identify a frequency hopping location based on the length of the PUCCH and a number of bits used to represent the UCI. In some cases, the frequency hopping location partitions the long PUCCH into a first set of symbol periods and a second set of symbol periods. After identifying the frequency hopping location, the wireless device may transmit a UCI message, which may include information and reference symbols, over a first frequency bandwidth during the first set of symbol periods and over a second frequency bandwidth during the second set of symbol periods.

    Non-orthogonal multiple access techniques for narrowband internet of things and machine type communication

    公开(公告)号:US10863334B2

    公开(公告)日:2020-12-08

    申请号:US16180845

    申请日:2018-11-05

    Abstract: Repeated signals for narrowband internet of things (NB-IoT) and machine type communication (MTC) may be transmitted using various non-orthogonal multiple access (NOMA) techniques. A user equipment (UE) may generate a set of modulated symbols associated with the data stream, spread the set of symbols using a spreading factor, and may subsequently apply a scrambling sequence to the set of symbols. The spread and scrambled symbols may be transmitted as a time domain waveform that includes one or more repetitions of a transmission time interval (TTI) or a resource unit (RU). Additionally, or alternatively, the UE may perform rate matching and apply the scrambling sequence to achieve the repetitions of the TTIs or RUs. In some cases, the UE may transmit a set of orthogonal pilot signals with the repetitions of the TTIs or RUs, where the pilot signals include different cyclically shifted versions of a base pilot signal.

    Techniques for reducing adjacent channel leakage-power ratio

    公开(公告)号:US10826741B2

    公开(公告)日:2020-11-03

    申请号:US16552943

    申请日:2019-08-27

    Abstract: Adjacent channel leakage-power ratio (ACLR) can be reduced at a transmitter of a device. A modulated signal can be mapped into a plurality of tone sets in a frequency domain, wherein the plurality of tone sets include a first, a second, and a third set of tones. The first and the third set of tones can be converted in the frequency domain to a fourth and a fifth set of tones, respectively, in a time domain. A zero padding of one or more symbols associated with the fourth and the fifth set of tones can be performed to output a sixth and a seventh set of tones, respectively. The sixth and the seventh set of tones can be converted to an eighth and a ninth set of tones, respectively, in the frequency domain. The eighth and the ninth set of tones can be processed for transmitting to another wireless device.

    Symbol processing
    70.
    发明授权

    公开(公告)号:US10742372B2

    公开(公告)日:2020-08-11

    申请号:US16373113

    申请日:2019-04-02

    Abstract: Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that a resource spread multiple access scheme is enabled, wherein the bit and/or symbol level resource spreading happens in time and/or frequency domain through bits or symbol level repetition and spreading. Furthermore, the UE may process bits of codewords and modulated symbols using a set of spreading sequences and a set of scrambling sequences. The UE may transmit the modulated symbols with a discrete-Fourier-transform (DFT)-spread (DFT-s) waveform based at least in part on processing the modulated symbols using the set of spreading sequences and the set of scrambling sequences. Numerous other aspects are provided.

Patent Agency Ranking