Abstract:
Aspects are described for reducing interference in wireless systems. In a first embodiment, an uplink acknowledgment region associated with a macro cell is determined, and an assignment of uplink control resources is restricted to a region within the uplink acknowledgment region. A control signal is then transmitted to user equipment via the assignment of uplink control resources. In another embodiment, control signals are received from wireless terminals, which include desired uplink control signals associated with an access point base station, as well as interfering uplink acknowledgement signals associated with macro cells. The control signals may then be regenerated by cancelling the set of interfering signals from the control signals. The desired uplink control signals are then decoded.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a payload for inclusion in an uplink transmission. The UE may organize the payload into a code block group (CBG) that includes one or more code blocks (CB). The UE may map each CB of the CBG to a corresponding uplink shared channel resource unit (e.g., a physical uplink shared channel resource unit) of an uplink transmission occasion of the first UE. The uplink transmission occasion may also be shared with one or more additional UEs such that the CBG of the first UE is multiplexed with additional CBGs from the additional UEs. The UE may transmit, to a base station, the uplink transmission including each uplink shared channel resource unit on which the CBG is organized.
Abstract:
Methods and apparatuses for wireless communication for line-of-sight Multiple-Input-Multiple-Output (LOS MIMO) are described. A first pilot signal is transmitted to a second device. The first pilot signal is at least one of a constant phase pilot or a linear phase ramped pilot for estimating a misalignment of a second antenna array of the second device with respect to a first antenna array of the first device.
Abstract:
Wireless communication devices are adapted to facilitate a random access procedure. According to one example, scheduled entity can transmit a first transmission that is received by a scheduling entity. The first transmission may include a physical random access channel (PRACH) preamble sequence and a first message including information for determining a device-specific network identifier for the scheduled entity. The scheduling entity may transmit a second transmission that is received by the scheduled entity. The second transmission may include information on a physical downlink control channel (PDCCH) addressed to the device-specific network identifier for the scheduled entity, and a second message on a physical downlink shared channel (PDSCH). Other aspects, embodiments, and features are also included.
Abstract:
Sequence selection techniques for Non-Orthogonal Multiple Access (NOMA) are provided. A User Equipment (UE) sends a request to a base station, the request indicating that the UE is to conduct at least one uplink transmission. The UE receives, in response to the request, an indicator of an expected system load, a value of the indicator including a total number of sequences expected to be used at one time for uplink transmissions in the system. The UE detects that at least two different pairs of sequences in a configured set of sequences have different cross correlation values, the sequences in the set configured for scrambling uplink transmissions. The UE selects, in response to the detecting and based on the indicator, at least one sequence with an improved cross correlation with at least one other sequence the at least one sequence and the at least one other sequence to be used for scrambling uplink transmissions within the system.
Abstract:
Methods, systems, and apparatuses for wireless communication are described. In some wireless systems (e.g., new radio (NR) systems), a system may employ fixed or variable length uplink burst regions (e.g., in an uplink-centric slot). The base station may semi-statically or dynamically configure a user equipment (UE) or group of UEs for uplink control channel transmissions within an uplink burst region. In semi-static configuration, the UE may determine the uplink control channel transmission based on values transmitted or indicated via higher-layer signaling or based on default values. In dynamic configuration, the UE may receive an indication of actual resources used by the base station in a physical layer message. The UE may transmit using an uplink control channel transmission based on the indication. In some cases, the base station may allocate code division multiplexing (CDM) groups based on which UEs are semi-statically configured and which are dynamically configured.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may identify, when using carrier aggregation and a plurality of component carrier groups, first traffic associated with a first service type and second traffic associated with a second service type for concurrent transmission. The user equipment may transmit, concurrently, the first traffic associated with the first service type using a first component carrier group of the plurality of component carrier groups, and the second traffic associated with the second service type using a second component carrier group of the plurality of component carrier groups. Numerous other aspects are provided.
Abstract:
A user equipment (UE) may perform a random access procedure to synchronize with a network for uplink and/or downlink communication. The UE may transmit a first type of random access transmission that includes transmitting a preamble or a second type of random access transmission that includes transmitting a preamble and a random access message. The second type may result in reduced delay but may have lesser SNR tolerance than the first type. In some aspects, the UE may determine whether to transmit the first type or the second type, and may transmit the first type or the second type in a random access channel portion of a slot. The random access channel portion of the slot may be occupied by portions of either the first type of random access transmission or the second type of random access transmission, thereby enabling flexible utilization of multiple types of random access procedure.
Abstract:
Systems, methods, and devices for wireless communication that support mechanisms signaling non-linearities to a victim user equipment (UE) for interference cancellation in a wireless communication system. A victim UE may experience interference from an uplink transmission by an aggressor UE to a base station. The victim UE may obtain a power amplifier model associated with the aggressor UE. The power amplifier may include a non-linearity model of a power amplifier of the aggressor UE causing the interference on the victim UE. The power amplifier model obtained by the victim UE may be dependent on various parameters, such as a transmit power used by the aggressor UE to transmit the uplink transmission causing the interference. Based on the aggressor UE transmit power, the victim UE may select parameters for power amplifier model and may estimate the interference caused by the uplink transmission for interference cancellation.
Abstract:
In a legacy gNB (e.g., pre-Rel. 17 gNB), RC UEs with only 1 or 2 receive antennas may have a geographic coverage area for control data and traffic data that is smaller than their geographic coverage area for SSB with respect to certain legacy gNBs. By contrast, at least some new gNBs (e.g., Rel. 17+ gNBs) have the capability to provide uniform geographic coverage for RC UEs with respect to SSB, control data and traffic data. In an aspect of the disclosure, a particular class of UEs (such as RC UEs) is steered towards particular cells (e.g., Rel. 17+ gNBs) via one or more biased class-specific cell selection parameters included in system information from the cells.