Abstract:
Methods and apparatuses are provided that facilitate allowing position determination of devices in wireless networks with home evolved Node Bs (HeNB). An HeNB can determine its location based at least in part on positioning measurements from one or more devices. The HeNB can additionally or alternatively register its location or other location parameters with a positioning server for subsequent provisioning as assistance information for determining a device position. Moreover, a device can request assistance information related to a different base station where the HeNB is not registered with the positioning server.
Abstract:
Systems and methods are disclosed that facilitate creating antenna ports to correspond to two or more groups of user equipment. The systems and methods can organize two or more groups of user equipment and signal to each of the two or more groups a respective antenna port. The systems and methods can further communicate mapping information, a reference signal, or delay related to a linear combination in order to identify antenna ports. Based on such communicated information, the reference signal can be decoded in order to identify each antenna port.
Abstract:
Aspects describe a Highly Detectable Pilot that allows a mobile device to detect more base stations and, thus, can provide more accuracy in location estimate. A highly detectable pilot can be transmitted in one or more data symbols that are not currently being utilized for transmission of data. Transmission of the highly detectable pilot in two data symbols provide a receiver with more convergence time, however, it can take the receiver a longer amount of time to acquire an adequate number of pilots for a location estimate.
Abstract:
Aspects describe utilizing a dedicated reference signal for supporting Network MIMO, distributed MIMO, Coordinated MultiPoint, and the like. A data modulation symbol is transmitting in the same direction as a pilot modulation symbol is transmitted. Two or more wireless devices can coordinate communications such that transmission of the same pilot modulation symbol and the same data modulation symbol are transmitted to a device in different directions, each direction associated with a wireless device and intended for a particular mobile device. Cluster-specific scrambling and/or user-group specific scrambling can be employed and a scrambling code can be communicated prior to transmission of the pilot modulation symbols and data modulation symbols.
Abstract:
Aspects describe a Highly Detectable Pilot that allows a mobile device to detect more base stations and, thus, can provide more accuracy in location estimate. A highly detectable pilot can be transmitted in a portion of one or more data symbols that are not currently being utilized for transmission of data. Transmission of the highly detectable pilot in two data symbols provide a receiver with more convergence time, however, it can take the receiver a longer amount of time to acquire an adequate number of pilots for a location estimate.
Abstract:
Techniques for supporting communication in a dominant interference scenario are described. A user equipment (UE) may communicate with a first base station and may observe high interference from and/or may cause high interference to a second base station. In one design, the first base station may use a first frequency band, which may overlap at least partially with a second frequency band for the second base station and may further extend beyond the second frequency band. The first base station may send at least one synchronization signal and a broadcast channel in a center portion of the first frequency band for use by UEs to detect the first base station. The second frequency band may be non-overlapping with the center portion of the first frequency band. The first base station may also communicate with at least one UE on the first frequency band.
Abstract:
Techniques for performing peer discovery in a wireless network are described. A device may perform peer discovery to detect and identify other devices of interest. In an aspect, the device may perform peer discovery based on a hybrid mode that includes autonomous peer discovery and network-assisted peer discovery. In another aspect, the device may perform peer discovery based on a push mode and a pull mode. For the push mode, the device may occasionally transmit and/or receive a peer detection signal. For the pull mode, the device may transmit and/or receive a peer discovery request when triggered. In yet another aspect, the device may perform event-triggered peer discovery (e.g., for the pull mode). In yet another aspect, the device may perform peer discovery using both a downlink spectrum and an uplink spectrum. In yet another aspect, the device may transmit a peer detection signal in a manner to improve detection and/or increase payload.
Abstract:
A method to mitigate interference in a wireless system is provided. The method includes processing a set of radio network identifiers and limiting a number of hypotheses associated with the radio network identifiers in order to mitigate interference in a wireless network. In another aspect, the method includes processing a set of hypotheses and limiting the set of hypotheses by limiting a number of downlink grants to a common space, limiting the number of downlink grants to a number of instances, or limiting the number of grants to a physical downlink control channel (PDCCH) type. In yet another aspect, the method includes processing a downlink set and generating a target termination level for the downlink data set, the termination level associated with a Hybrid automatic repeat-request.
Abstract:
Techniques for determining resources to use for peer-to-peer (P2P) communication are disclosed. In an aspect, a network entity may receive feedback information (e.g., resource usage information and/or channel state information) from P2P devices and may perform resource partitioning based on the feedback information to allocate some of the available resources for P2P communication. The allocated resources may observe little or no interference from devices engaged in wide area network (WAN) communication. In another aspect, P2P groups may perform resource negotiation via a WAN connection (e.g., with little or no involvement by the WAN) to assign the allocated resources to different P2P groups. In yet another aspect, a device may autonomously determine whether to communicate with another device directly or via a WAN, e.g., whether to initiate P2P communication with another device and whether to terminate P2P communication. In yet another aspect, a network entity may participate in resource negotiation by P2P devices.
Abstract:
Techniques for transmitting and detecting for overhead channels and signals in a wireless network are described. In an aspect, a base station may blank (i.e., not transmit) at least one overhead transmission on certain resources in order to detect for the at least one overhead transmission of another base station. In one design, the base station may (i) send the overhead transmission(s) on a first subset of designated resources and (ii) blank the overhead transmission(s) on a second subset of the designated resources. The designated resources may be resources on which the overhead transmission(s) are sent by macro base stations. The base station may detect for the overhead transmission(s) from at least one other base station on the second subset of the designated resources. In another aspect, the base station may transmit the overhead transmission(s) on additional resources different from the designated resources.