Abstract:
Aspects of the disclosure provide an apparatus that includes a baseband processing circuit and a transmitting circuit. The baseband processing circuit is configured to encode a reference signal based on a specific sequence to generate a digital stream. The specific sequence has non-zero values at selected positions, and the number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold. The transmitting circuit is configured to transmit wireless signals in response to the digital stream.
Abstract:
A method of steering beam direction and shaping beamwidth of a directional beam using a phased antenna array in a beamforming cellular system is proposed. The N antenna elements of the phased antenna array are applied with a set of combined beam coefficients to steer the direction of the beam and to shape the beamwidth to a desired width. Specifically, in addition to the original constant phase shift values, additional phase modulations are applied to expand the beam to a desirable width. The phased antenna array applied with the combined beam coefficients involve only phase shift, no amplitude modulation is needed and thereby increasing beamforming gain and efficiency.
Abstract:
A method of control signaling in a beamforming system is proposed. A base station allocates a first sets of DL control resource blocks for DL transmission to a plurality of user equipments (UEs) in a beamforming network. Each set of DL control resource blocks is associated with a corresponding set of beamforming weights. The base station also allocates a second sets of UL control resource blocks for UL transmission from the UEs. Each set of UL control resource blocks is associated with the same corresponding set of beamforming weights. The base station transmits cell and beam identification information using a set of control beams. Each control beam comprises a set of DL control resource block, a set of UL control resource block, and the corresponding set of beamforming weights.
Abstract:
A method of providing channel station information in a beamforming system is proposed. Reference Signal (RS) is used for channel state estimation. For fine-resolution dedicated beam with smaller spatial coverage, additional channel monitoring of coarse-resolution beams for beam fallback is applied. The joint coverage of monitored fallback beams covers a desired service area. For beam administration, fallback beams need to be evaluated and the most preferable beam is selected for use in case the currently used dedicated beam is no longer suitable. For link adaptation, at least the channel state of the selected fallback beam is evaluated and provided to a scheduler (e.g., a BS) for adapting the transmission of the selected fallback beam.
Abstract:
A method of downlink channel state information (DL CSI) computation and reporting is proposed to support high velocity in new radio (NR) systems. In a first novel aspect, two CSI reference slots are defined. CSI reference slot for CSI measurement is defined for determining which CSI-RS/SSB occasion(s) is used for computing CSI. CSI reference slot for CSI computation is defined for determining the slot where UE assumes the CSI computation should be based upon the channel at that time onwards. In a second novel aspect, UE can be configured with a CSI computation period consisting of one or N slots and can be divided into multiple sub-periods without overlap. UE can be configured to compute and report wideband CSI and subband CSI for the whole CSI computation period and/or for each sub-period.
Abstract:
Various solutions for tiered channel information feedback with respect to user equipment and network apparatus in mobile communications are described. An apparatus may determine a first tier channel state information (CSI) based on a first reference signal resource measurement. The apparatus may report the first tier CSI to a network node. The apparatus may determine a second tier CSI based on the first tier CSI and based on a second reference signal resource measurement. The apparatus may report the second tier CSI to the network node. The second tier CSI may be different from the first tier CSI.
Abstract:
Techniques pertaining to channeling state information (CSI) pre-processing are described. A user equipment (UE) that is in wireless communication with a base station node extracts eigenvectors (EVs) from CSI acquired by the UE. The UE generates pre-processed CSI for compression by a machine-learning (ML)-based encoder of the UE into CSI feedback for the base station node by at least performing one or more of a phase discontinuity compensation (PDC), a one-step polarization separation with re-ordering, or a two-step polarization separation that includes separation based on polarization type and separation by position on the EVs.
Abstract:
Techniques and examples of efficient detection of a transmission session in New Radio unlicensed spectrum (NR-U) are described. An apparatus (e.g., user equipment (UE)) detects presence of an indication from a base station of a wireless network in an NR-U. The apparatus determines that a transmission opportunity (TXOP) follows the indication responsive to the detecting. The apparatus then receives a downlink (DL) transmission in the NR-U from the base station during the TXOP.
Abstract:
Method and apparatus are provided for joint communication and sensing with same radio resource in a mobile communication system. An apparatus can receive a common signal from a network node. The apparatus can use the common signal as a pilot signal to perform a channel estimation. The apparatus can use the common signal as a sensing signal to perform a sensing. The common signal comprises the pilot signal and the sensing signal.
Abstract:
A method of downlink channel state information (DL CSI) computation and reporting is proposed to support high velocity in new radio (NR) systems. In a first novel aspect, two CSI reference slots are defined. CSI reference slot for CSI measurement is defined for determining which CSI-RS/SSB occasion(s) is used for computing CSI. CSI reference slot for CSI computation is defined for determining the slot where UE assumes the CSI computation should be based upon the channel at that time onwards. In a second novel aspect, UE can be configured with a CSI computation period consisting of one or N slots and can be divided into multiple sub-periods without overlap. UE can be configured to compute and report wideband CSI and subband CSI for the whole CSI computation period and/or for each sub-period.