Abstract:
A method of supporting Hybrid Automatic Repeat Request (HARQ) includes receiving an initial uplink grant on a downlink channel, transmitting uplink data on an uplink channel using the initial uplink grant, receiving a request for retransmission of the uplink data, determining at least one transmission parameter of a channel quality indicator (CQI) from the initial uplink grant, multiplexing retransmission data of the uplink data with the CQI, and transmitting the multiplexed data on the uplink channel.Amount of resources for transmission of the CQI is determined based on the at least one transmission parameter.
Abstract:
In a system having a plurality of cells participating in a Coordinated Multi-Point (CoMP) operation, a method for transmitting Reference Signals (RSs) to User Equipment (UE) includes generating, by Base Station (BS) included in each of the plurality of cells, a subframe including RSs for a UE located in the each of the plurality of cells, and transmitting the generated subframe to the UE by the BS. The RSs include RSs for channel measurement, and RSs for data demodulation, the plurality of cells are grouped according to frequency shift values applied to the RSs for channel measurement and RS allocation patterns are determined for two cells among the plurality of cells according to a predetermined rule.
Abstract:
A method of performing HARQ performed by a user equipment (UE) is provided. The method includes receiving a bundling indicator which indicates the number of bundled downlink subframes, determining whether at least one bundled downlink subframe is missed by comparing the bundling indicator with the number of detected bundled downlink subframes, generating a representative ACK/NACK signal when no bundled downlink subframe is missed, and transmitting the representative ACK/NACK signal on an uplink channel. Recovery capability is maximized and the packet loss is reduced in such a situation that less number of ACK/NACK signals are fed back than that of downlink packets.
Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.
Abstract:
A method and device for transmitting a reference signal are discussed. The method can be performed by a wireless device, and can include generating a pseudo-random sequence, generating a reference signal based on the pseudo-random sequence, and transmitting the reference signal sequence. The device can include a signal generator coupled with a data processor and configured to generate a pseudo-random sequence and a reference signal based on the pseudo-random sequence. The device can further include a transmit circuitry configured to transmit the reference signal sequence.
Abstract:
A method and an apparatus for providing channel quality information in a wireless communication system are disclosed. According to one embodiment of the invention, a method for transmitting channel quality information includes receiving a downlink signal, calculating a channel quality information index for the received downlink signal at least based on a number of resource elements for a physical downlink shared channel (PDSCH), wherein the number of resource elements for the PDSCH is determined at least based on an overhead of a demodulation reference signal (DMRS), and transmitting the calculated channel quality information index.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-sub frame PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first Information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method and device for generating a reference signal sequence are discussed. The method includes generating the reference signal sequence, and transmitting the reference signal sequence, wherein the reference signal sequence is defined by a specific equation based on a pseudo-random sequence.
Abstract:
According to one embodiment, a method for a wireless local area includes: generating a medium access control (MAC) protocol data unit (MPDU) to be transmitted to a target station; generating a physical layer convergence procedure (PLCP) protocol data unit (PPDU) by attaching a PLCP preamble to the MPDU; selecting a transmission channel; and transmitting the PPDU to the target station over the transmission channel. Selecting the transmission channel includes: performing clear channel assessment (CCA) on a first channel to determine whether the first channel is idle; and only after it is determined that the first channel is idle, selecting the first channel and at least one idle second channel as the transmission channel. The PLCP preamble includes channel allocation information indicating a bandwidth of the transmission channel.