Control unit, system and method for controlling hybrid robot having rigid proximal portion and flexible distal portion

    公开(公告)号:US12239380B2

    公开(公告)日:2025-03-04

    申请号:US16084746

    申请日:2017-03-17

    Abstract: A control unit for a robot system including a robot with a rigid proximal portion having a remote center of motion (RCM), a flexible distal portion, and an image acquisition device. The control unit includes a processor that receives images from the image acquisition device; generates a first deployment path to a first target position based on the images; generates a second deployment path to a second target position from the first target position based on the images; generates first guidance information for positioning the rigid proximal portion along the first deployment path; generates second guidance information for positioning the flexible distal portion along the second deployment path; and deploys the first guidance information to the rigid proximal portion for guiding the rigid proximal portion to the first target position, and deploys the second guidance information to the flexible distal portion for guiding the flexible interface distal portion to the second target position.

    Endoscope guidance from interactive planar slices of a volume image

    公开(公告)号:US11596292B2

    公开(公告)日:2023-03-07

    申请号:US15745761

    申请日:2016-07-07

    Abstract: An endoscopic imaging system (10) employing an endoscope (20) and an endoscope guidance controller (30). In operation, endoscope (20) generates an endoscopic video (23) of an anatomical structure within an anatomical region. Endoscopic guidance controller (30), responsive to a registration between the endoscopic video (23) and a volume image (44) of the anatomical region, controls a user interaction (50) with a graphical user interface (31) including one or more interactive planar slices (32) of the volume image (44), and responsive to the user interaction (50) with the graphical user interface (31), endoscopic guidance controller (30) controls a positioning of the endoscope (20) relative to the anatomical structure derived from the interactive planar slices (32) of the volume image (44). A robotic endoscopic imaging system (11) incorporates a robot (23) in the endoscopic imaging system (10) whereby endoscope guidance controller (30) controls a positioning by robot (23) of the endoscope (20) relative to the anatomical structure.

    Augmented reality interventional system providing contextual overlays

    公开(公告)号:US11551380B2

    公开(公告)日:2023-01-10

    申请号:US16478135

    申请日:2018-01-15

    Abstract: An augmented reality interventional system which provides contextual overlays (116) to assist or guide a user (101) or enhance the performance of the interventional procedure by the user that uses an interactive medical device (102) to perform the interventional procedure. The system includes a graphic processing module (110) that is configured to generate at least one contextual overlay on an augmented reality display device system (106). The contextual overlays may identify a component (104) or control of the interactive medical device. The contextual overlays may also identify steps of a procedure to be performed by the user and provide instructions for performance of the procedure. The contextual overlays may also identify a specific region of the environment to assist or guide the user or enhance the performance of the interventional procedure by identifying paths or protocols to reduce radiation exposure.

    System, controller and method using virtual reality device for robotic surgery

    公开(公告)号:US11413099B2

    公开(公告)日:2022-08-16

    申请号:US16871645

    申请日:2020-05-11

    Abstract: A control unit is provided for a surgical robot system, including a robot configured to operate an end-effector in a surgical site of a patient. The control unit includes a processor configured to transmit acquired live images of a patient, received from an image acquisition device, to a virtual reality (VR) device for display; to receive input data from the VR device, including tracking data from a VR tracking system of the VR device based on a user's response to the live images displayed on a viewer of the display unit of the VR device; to process the input data received from the VR device to determine a target in the patient; to determine a path for the end-effector to reach the target based upon the live images and the processed input data; and to transmit control signals to cause the robot to guide the end-effector to the target via the determined path.

    System, control unit and method for control of a surgical robot

    公开(公告)号:US10786319B2

    公开(公告)日:2020-09-29

    申请号:US16065891

    申请日:2016-12-28

    Abstract: A surgical robot system is disclosed. The surgical robot system includes a handheld introducer and a flexible surgical device. A control unit includes a processor, and a memory that stores, among other things, machine readable instructions configured to be executed by a processor to control a flexible surgical device. The surgical robot system also includes an imaging device, and a tracking system. The processor is configured to generate guidance commands to control the flexible surgical device based on information relaying to the images of the flexible surgical device, and the position of at least on point of the handheld introducer.

    Markerless robot tracking systems, controllers and methods

    公开(公告)号:US10751133B2

    公开(公告)日:2020-08-25

    申请号:US16498000

    申请日:2018-03-28

    Abstract: A markerless robot tracking system (10) employing a surgical RCM robot (20) including a primary revolute joint (22) rotatable about a primary rotational axis and a secondary revolute joint (22) rotatable about a secondary rotational axis. A plurality of unique landmark sets are integrated into the robot (20) with each unique landmark set including landmark(s) (30) in a fixed orientation relative to the primary rotational axis and further including additional landmark(s) (30) in a fixed orientation relative to the secondary rotational axis. The system (10) further an optical camera (41, 51) for visualizing a subset of the plurality of unique landmark sets within a camera coordinate system (43, 53), and a robot tracking controller (70) for estimating a robot pose of the surgical RCM robot (20) within the camera coordinate system (43, 53) derived from the visualization by the optical camera (41, 51) of the subset of landmark(s) within the camera coordinate system (43, 53).

Patent Agency Ranking