Abstract:
A robotic arm including a parallel spherical five-bar linkage with a remote center of spherical rotation. The robotic arm movably supports an endoscopic camera. Two outboard links are pivotally coupled together. At least one of the two outboard links supports the endoscopic camera. Two inboard links are respectively pivotally coupled to the two outboard links such that the two inboard links are able to cross over one another. The two inboard links moveably support the two outboard links. A ground link is pivotally coupled to the two inboard links. The ground link moveably supports the two inboard links.
Abstract:
Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.
Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
Abstract:
Methods and systems for damping vibrations in a surgical system are disclosed herein. The damping of these vibrations can increase the precision of surgery performed using the surgical system. The surgical system can include one or several moveable set-up linkages. A damper can be connected with one or several of the set-up linkages. The damper can be a passive damper and can mitigate a vibration arising in one or more of the set-up linkages. The damper can additionally prevent a vibration arising in one of the linkages from affecting another of the set-up linkages.
Abstract:
A cannula mount for a surgical system includes a body configured to receive a portion of a cannula in a mounted state at the cannula mount; a pair of clamping components coupled to the body and configured to clamp the portion of the cannula in the mounted state of the cannula; and a latch assembly pivotably coupled to the body and slidably coupled to a clamping component of the pair of clamping components. At least one of the pair of clamping components is pivotable relative to the body to move the pair of clamping components between a first state to unclamp a cannula mounted at the cannula mount and a second state to clamp a cannula mounted at the cannula mount. Pivoting motion of the latch assembly relative to the body causes a portion of the latch assembly to slide along the clamping component and change a state of the pair of clamping components from an unlocked state to a locked state in the second state of the pair of clamping components.
Abstract:
Embodiments of a cannula seal are disclosed. In some embodiments, a cannula seal can include a base portion that engages with a cannula; and a seal portion integrally formed with the base portion that slidebly engages with an instrument shaft such that an insertion frictional force between the seal portion and the instrument shaft for insertion of the instrument shaft is symmetrical and substantially equal with a retraction frictional force.
Abstract:
Embodiments of a cannula seal are disclosed. In some embodiments, a cannula seal can include a base portion that engages with a cannula; and a seal portion integrally formed with the base portion that slidebly engages with an instrument shaft such that an insertion frictional force between the seal portion and the instrument shaft for insertion of the instrument shaft is symmetrical and substantially equal with a retraction frictional force.
Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
Abstract:
An image capture unit has mounted in a frame: a first imaging assembly, a first circuit board, a second imaging assembly, and a second circuit board. The first imaging assembly is mounted on the first circuit board. The second imaging assembly is mounted on the second circuit board. A portion of the first circuit board and a portion of the second circuit board have a stacked configuration with the portion of the first circuit board being approximately parallel to the portion of the second circuit board. An end of another portion of the first circuit board is adjacent to an end of another portion of the second circuit board.