Abstract:
System, method, and computer program product for performing an operation, the operation comprising analyzing a question submitted to a deep question answering system to determine a level of sophistication of the question, and modifying one or more subsequent communications issued by the deep question answering system based on the determined level of sophistication, wherein the modifying attempts to more closely match the determined level of sophistication of the question with a level of sophistication of the one or more subsequent communications.
Abstract:
Techniques are disclosed to determine an expected or predicted opinion of a target individual. To do so, a deep question answer system may build a corpus which includes a first collection of documents attributable to a first person and a second collection of documents identified from content in the first collection of documents and evaluate the corpus to build a model representing opinions of the first person relative to topics, concepts, or subjects discussed in the first and second collections of documents. The deep question answer system may also receive a request to predict an opinion of the first person regarding a topic and generate a predicted opinion of the first person regarding the topic from the model.
Abstract:
A computer-implemented method of managing perspective data associated with a common feature in items is disclosed. The method can include identifying a common feature in a first item and a second item, the first item having a set of perspective data and establishing a subset of perspective data associated with the common feature. The method can include associating the subset of perspective with the second item. The method can include determining a set of relevancy scores for the subset of perspective data associated with the common feature and establishing a set of relevant perspective data from the subset of perspective data. The set of relevant perspective data can have relevancy scores outside of a relevancy threshold. The method can include associating the set of relevant perspective data with the second item.
Abstract:
In some NLP systems, queries are compared to different data sources stored in a corpus to provide an answer to the query. However, the best data sources for answering the query may not currently be contained within the corpus or the data sources in the corpus may contain stale data that provides an inaccurate answer. When receiving a query, the NLP system may evaluate the query to identify a data source that is likely to contain an answer to the query. If the data source is not currently contained within the corpus, the NLP system may ingest the data source. If the data source is already within the corpus, however, the NLP may determine a time-sensitivity value associated with at least some portion of the query. This value may then be used to determine whether the data source should be re-ingested—e.g., the information contained in the corpus is stale.
Abstract:
In some NLP systems, queries are compared to different data sources stored in a corpus to provide an answer to the query. However, the best data sources for answering the query may not currently be contained within the corpus or the data sources in the corpus may contain stale data that provides an inaccurate answer. When receiving a query, the NLP system may evaluate the query to identify a data source that is likely to contain an answer to the query. If the data source is not currently contained within the corpus, the NLP system may ingest the data source. If the data source is already within the corpus, however, the NLP may determine a time-sensitivity value associated with at least some portion of the query. This value may then be used to determine whether the data source should be re-ingested—e.g., the information contained in the corpus is stale.
Abstract:
In some NLP systems, queries are compared to different data sources stored in a corpus to provide an answer to the query. However, the best data sources for answering the query may not currently be contained within the corpus or the data sources in the corpus may contain stale data that provides an inaccurate answer. When receiving a query, the NLP system may evaluate the query to identify a data source that is likely to contain an answer to the query. If the data source is not currently contained within the corpus, the NLP system may ingest the data source. If the data source is already within the corpus, however, the NLP may determine a time-sensitivity value associated with at least some portion of the query. This value may then be used to determine whether the data source should be re-ingested—e.g., the information contained in the corpus is stale.
Abstract:
A method, computer system, and computer program product for determining qualities of user favorable photographs are provided. The embodiment may include receiving a plurality of photographs from an electronic device. The embodiment may also include parsing each photograph. The embodiment may further include calculating a favorability value of each photograph. The embodiment may also include determining whether the favorability value of each photograph exceeds a favorability threshold value. The embodiment may further include organizing the received photographs into one or more clusters based on features of each photograph. The embodiment may also include generating a classification model for each cluster.
Abstract:
A processor uses natural language processing to ingest product reviews for a plurality of products. Each of the products embodies a specific form for each of the plurality of product features. The processor analyzes the ingested product reviews for sentiments associated with the specific forms. The processor generates a sentiment score for each product feature based on the analysis. The processor ranks the plurality of product features based on the sentiment scores.
Abstract:
A method, computer system, and computer program product for determining qualities of user favorable photographs are provided. The embodiment may include receiving a plurality of photographs from an electronic device. The embodiment may also include parsing each photograph. The embodiment may further include calculating a favorability value of each photograph. The embodiment may also include determining whether the favorability value of each photograph exceeds a favorability threshold value. The embodiment may further include organizing the received photographs into one or more clusters based on features of each photograph. The embodiment may also include generating a classification model for each cluster.
Abstract:
A system, a method, and a computer program product for managing answer feasibility in a Question and Answering (QA) system. A set of candidate situations is established. The set of candidate situations corresponds to a first set of answers. A QA system establishes the set of candidate situations by analyzing a corpus. The first set of answers will answer a question. The QA system identifies a subset of the set of candidate situations. The subset of candidate situations corresponds to a portion of contextual data. The portion of contextual data is from a set of contextual data. The set of contextual data relates to the question. The question-answering system determines a set of answer feasibility factors. The set of answer feasibility factors is determined using the subset of candidate situations. The set of answer feasibility factors indicates the feasibility of the answers in the first set of answers.