Abstract:
This application provides a handover method that is based on DC, including: sending, by a source base station, a handover request to a target base station, where the handover request carries a target base station user equipment (UE) aggregate maximum bit rate (UE-AMBR) and/or network slice information of UE; and receiving, by the source base station, a handover request feedback sent by the target base station. A UE capability is coordinated between the source base station and the target base station, so that it is ensured that a technical effect of the UE capability is not exceeded during a DC-based handover. The coordination of the UE capability may be implemented by the source base station, or may be implemented by the target base station.
Abstract:
Embodiments of the present invention propose a communication method. The communication method includes: obtaining, by a base station, DRB configuration information, where the DRB configuration information is used to determine a mapping relationship between serving cells and DRBs used to carry data of different service types; and sending the DRB configuration information to a terminal, so that the terminal communicates with the base station in a serving cell corresponding to a DRB. The embodiments of the present invention further disclose a base station and a terminal to which the communication method is applied.
Abstract:
A cell measurement method and cell measurement apparatus, the method including receiving, by a terminal device, first information from a network device, where the first information indicates a measurement parameter used by the terminal device to perform cell measurement in an idle state or an inactive state, and a detection signal for the cell measurement includes at least a synchronization sequence or physical broadcast channel block (SSB) or a channel state information reference signal (CSI-RS), and sending, by the terminal device, a measurement result of the cell measurement to the network device based on the first information.
Abstract:
A location information reporting method includes: a first base station receives a first message from a core network device, where the first message includes first instruction information used to instruct to obtain location information of a terminal device, and the first base station and the core network device have a control plane connection established for the terminal device; and the first base station sends a second message to a second base station, where the second message includes second instruction information, the second instruction information is used to instruct to obtain the location information of the terminal device, and the second base station is configured to provide a service for the terminal device at a current moment.
Abstract:
The embodiments of the present invention provide a congestion control implementation method and apparatus, where the method includes: determining one or more user equipments for which single radio voice call continuity (SRVCC) offloading needs to be performed; sending an SRVCC offload message to an E-UTRAN NodeB serving the one or more user equipments, so that when triggering an SRVCC handover procedure, the E-UTRAN NodeB switches the one or more user equipments from a Long Term Evolution (LTE) domain to a circuit switched (CS) domain. When the SRVCC handover procedure is completed, the one or more user equipments can be switched from VoLTE user equipments to VoCS user equipments. In this way, LTE cell load can be alleviated and QoS of the one or more user equipments can be guaranteed.
Abstract:
The present application provides a control method in a communications network, a centralized controller, and a wireless communications network system, where the method includes: generating a to-be-confirmed processing type list according to a service type of a service flow and a data path type template, where the to-be-confirmed processing type list includes all processing function types that may be needed by the service flow; then filtering the to-be-confirmed processing type list, and generating a processing type list, where the processing type list includes processing function types that are essential to the service flow; further, sequentially selecting a working policy and a working parameter for each processing instance, generating a full path policy, and sending the full path policy to an instance of each function node. Therefore, a corresponding service flow path is selected according to a service type corresponding to a different service flow, network resource utilization is improved.