Abstract:
A method for determining antenna weights for use in transmitting data from a plurality of base stations to a user device is disclosed. The antenna weights are determined using an input covariance matrix (S), and the input covariance matrix is determined subject to a predetermined power constraint and a predetermined, non-zero interference constraint.
Abstract:
A system and method in a radio receiver for joint synchronization and noise covariance estimation of a received signal. A spatially and temporally stacked signal model, whereby successive samples of temporally adjacent received signal vectors and corresponding training vectors are stacked, is used in the derivation of the estimation problem. The Toeplitz structure of the channel response matrix is neglected in the formulation of the estimation problem. The resulting estimator jointly estimates a synchronization position, a channel response matrix, and a noise covariance matrix. An estimate of a whitened channel is then computed based on the noise covariance matrix and the estimate of the channel response matrix.
Abstract:
The present invention provides a method of generating mutually orthogonal reference signals for different user terminals in and OFDM system that span different but overlapping subcarriers. The subcarriers allocated to the user terminals are divided into a plurality of non-overlapping subcarrier blocks. Each user terminal is then allocated one or more subcarrier blocks. For each subcarrier block, a user terminal is assigned a reference signal comprising a base reference sequence and a linear phase rotation. To ensure mutual orthogonality among all user terminals, user terminals allocated the same subcarrier block use the same base reference sequence with different linear phase rotations.
Abstract:
Transmission scheme for the uplink of FDMA systems that improves performance in an interference-dominated system by using a pilot scheme that provides enough information so that channel estimates can be obtained for a particular user, but which at the same time makes it possible to use pilot patterns that are different in different cells so that co-channel interference is mitigated. A codeword is used to position a set of pilot symbols within a set of subcarriers wherein each subcarrier has a first pilot time slot and a second pilot time slot associated with one or more data time slots. The set of subcarriers are identified on which to transmit the composite signal and the first pilot time slots and the second pilot time slots are filled with the pilot symbols in accordance with the codeword. The composite signal is then formatted as a combination of modulated data and pilot signals.
Abstract:
A channel response may be estimated from training symbols that are received over a channel, by determining an initial channel estimate from the training symbols and applying bias to the initial channel estimate to obtain a biased channel estimate. The biased channel estimate may then be used to demodulate a signal that is received over the channel.
Abstract:
A communication receiver improves its channel estimation performance, its equalization performance, or both, by modeling the non-Gaussian characteristics of a dominant source of interference in a received signal. That is, rather than using Gaussian-based modeling, the receiver generates signal disturbance estimates using a probabilistic model representative of the non-Gaussian interference in a received signal, such as adjacent channel or co-channel signal interference in mobile station operating within a wireless communication network. The receiver may use such non-Gaussian interference modeling responsive to detecting such interference in the received signal and may match its disturbance model to the detected interference. Further, where signal disturbance is predominantly Gaussian in nature, the receiver may switch to a Gaussian disturbance model.
Abstract:
A computationally efficient method for computing the filter coefficients for a prefilter in a decision feedback equalizer solves linear equations using a fast Toeplitz algorithm. Computations performed to compute the filter coefficients for the right half burst may be used to compute the prefilter for the left hand burst, thereby reducing the number of computations. Also, a square root-free algorithm may be used to solve the system of linear equations, further reducing computational complexity.
Abstract:
A wireless communication system with transmit diversity scales a training sequence simultaneously transmitted by two or more antennas over two or more time intervals in a manner that allows a receiver to perform channel estimation relative to each antenna. The transmit signal is scaled at each antenna in each time interval by a corresponding scaling value selected from a set of orthogonal scaling values. The receiver develops a channel estimate for each of the time intervals as if there were only one antenna transmitting the training sequence. These channel estimates are then summed or combined for each transmit antenna, using values from the corresponding scaling value matrix column. The orthogonality between scaling value sequences used between the multiple transmit antennas allows the receiver to distinguish the training sequence as received from the individual transmit antennas, and to thus perform channel estimation with respect to each transmit antenna.
Abstract:
The impulse response of a prefilter used with a DFSE equalizer in a receiver system is computed. A channel estimate is determined in response to signals received by the receiver system. The channel estimate may include a forward channel estimate and a backward channel estimate. Roots of a z-transform of the forward channel estimate and roots of a z-transform of the backward channel estimate are determined. Those roots of the z-transform of the forward channel estimate having a magnitude greater than one are used to form a z-transform of a forward impulse response of the prefilter while those roots of the z-transform of the backward channel estimate having a magnitude greater than one are used to form a z-transform of a backward impulse response of the prefilter. Forward prefilter coefficients for the prefilter are computed based on the z-transform of the forward impulse response of the prefilter and backward prefilter coefficients for the prefilter are computed based on the z-transform of the backward impulse response of the prefilter. A forward impulse response of a forward composite channel are computed based on the forward prefilter coefficients while a backward impulse response of a backward composite channel are computed based on the backward prefilter coefficients.
Abstract:
An apparatus, system, and method for dynamic, distributed coordination of parameters between a plurality of base stations in a cellular telecommunication network. An inter-cell communication interface connecting each given base station with the given base station's neighboring base stations is extended to communicate parameter settings between the given base station and the neighboring base stations. An apparatus in each given base station receives from the given base station's neighboring base stations, parameter settings being utilized by the neighboring base stations for transmitting and/or receiving in associated neighboring cells. The apparatus utilizes the parameter settings received from the neighboring base stations as factors to determine local parameter settings for the given base station. The given base station then sends the local parameter settings and supplemental information to the neighboring base stations so that optimal network-wide parameter settings can be selected.