Abstract:
A method for receiving transmissions includes receiving a first symbol-spaced baseband signal corresponding to first portions of first and second encoded data sequences transmitted over first and second baseband channels, and receiving a second symbol-spaced baseband signal corresponding to second portions of the first and second encoded data sequences transmitted over the first and second baseband channels. The first and second symbol-spaced baseband signals are combined to provide a combined baseband signal, and the combined baseband signal is prefiltered to provide minimum phase channel characteristics. The prefiltered combined baseband signal is equalized to provide an estimate of a data sequence. Related receivers are also discussed.
Abstract:
A computationally efficient method for computing the filter coefficients for a prefilter in a decision feedback equalizer solves linear equations using a fast Toeplitz algorithm. Computations performed to compute the filter coefficients for the right half burst may be used to compute the prefilter for the left hand burst, thereby reducing the number of computations. Also, a square root-free algorithm may be used to solve the system of linear equations, further reducing computational complexity.
Abstract:
The impulse response of a prefilter used with a DFSE equalizer in a receiver system is computed. A channel estimate is determined in response to signals received by the receiver system. The channel estimate may include a forward channel estimate and a backward channel estimate. Roots of a z-transform of the forward channel estimate and roots of a z-transform of the backward channel estimate are determined. Those roots of the z-transform of the forward channel estimate having a magnitude greater than one are used to form a z-transform of a forward impulse response of the prefilter while those roots of the z-transform of the backward channel estimate having a magnitude greater than one are used to form a z-transform of a backward impulse response of the prefilter. Forward prefilter coefficients for the prefilter are computed based on the z-transform of the forward impulse response of the prefilter and backward prefilter coefficients for the prefilter are computed based on the z-transform of the backward impulse response of the prefilter. A forward impulse response of a forward composite channel are computed based on the forward prefilter coefficients while a backward impulse response of a backward composite channel are computed based on the backward prefilter coefficients.
Abstract:
According to one or more method and apparatus embodiments taught herein, network base stations reduce temporal variations in the interference perceived by mobile stations operating within the network by slowing down the rate at which they change or otherwise update the linear precoding settings applied to their transmitted Orthogonal Frequency Division Multiplex (OFDM) signals in comparison to the rate at which the base stations perform link adaptation. That is, the precoding-related component of measured interference (e.g., other-cell interference) at the mobile stations is made quasi-stationary with respect to channel quality reporting and link adaptation intervals by fixing the preceding settings used by each base station over time intervals substantially longer than the channel reporting/link adaptation intervals.
Abstract:
Methods, systems and receiver devices are provided which may provide improved receiver performance in obtaining estimates of the complex-valued baseband channel in the presence of colored baseband noise. In various embodiments of the present invention, systems and methods are provided in which, over each synchronization signal period or other determinate information window, the channel coefficients and the color of the baseband noise are concurrently estimated. Thus, both the channel coefficients and the color of the noise are estimated, rather than assuming white noise, and channel coefficients may be provided that account for the color of the noise These estimates may be provided for each burst of a communication and may result in an improved channel estimate in the presence of colored noise. The baseband noise can become colored due to, for example, having a non-Nyquist receive filter, due to the presence of a colored co-channel interferer, or due to the presence of an adjacent channel interferer. The concurrent estimates of the color of the noise and channel coefficients may be provided iteratively or by selection of a best result among a plurality of candidate noise color assumptions.
Abstract:
According to one or more method and apparatus embodiments taught herein, network base stations reduce temporal variations in the interference perceived by mobile stations operating within the network by slowing down the rate at which they change or otherwise update the linear precoding settings applied to their transmitted Orthogonal Frequency Division Multiplex (OFDM) signals in comparison to the rate at which the base stations perform link adaptation. That is, the precoding-related component of measured interference (e.g., other-cell interference) at the mobile stations is made quasi-stationary with respect to channel quality reporting and link adaptation intervals by fixing the preceding settings used by each base station over time intervals substantially longer than the channel reporting/link adaptation intervals.
Abstract:
Metrics associated with each branch from a previous hypothesized trellis state to each respective possible current trellis state in a DFSE equalizer can be calculated. In particular, a common portion of branch metrics can be calculated that is common to each of the branch metrics from the previous hypothesized state to each of the current possible states, and difference variables representing a difference between the common portion of the branch metrics and each of the branch metrics from the previous hypothesized state to each of the current possible states can also be calculated. The common portion of the branch metrics and each of the difference variables can then be combined to provide a respective metric for each of the possible current states.
Abstract:
Methods, systems and receiver devices are provided which may reduce the average power of a signal disturbance by whitening the signal disturbance. In one aspect, a finite impulse response filter (FIR) is provided which whitens the signal disturbance by filtering a downsampled received signal using filter coefficients adaptively established using known signal information in each signal burst of the received signal. Alternatively, a noise-whitening equalizer is utilized having a modified metric that whitens the signal disturbance again using coefficients adaptively established using known signal information in each signal burst of the received signal. The noise-whitening equalizer approach further allows the noise-whitening coefficients to be updated by treating symbol estimates from the equalizer as known signal information to generate updated noise-whitening coefficients. A novel receiver containing a modified Euclidean metric equalizer to provide noise-whitening is also provided.
Abstract:
Compressive sampling is used to generate pilot symbols to be transmitted over an array of antennas in a MIMO wireless communications device. A pilot symbol is transmitted over the array of antennas according to a spatially randomized antenna transmission function that randomly changes across the array of antennas. The randomized antenna transmission function may randomly select/deselect antennas and/or randomly change amplitude and/or phase of the pilot symbol transmission. Channel estimates can be constructed at a receiver based on the spatially randomized pilot symbols that were transmitted.
Abstract:
Methods may be provided to transmit data from a wireless terminal operating in a radio access network. For example, sampling rate conversion may be performed on a serial stream of modulation symbols to generate sampling rate converted symbols, and the sampling rate converted symbols may be transmitted over a wireless channel to a node of the radio access network. Related terminals are also discussed.