Abstract:
An inductive charging system and method is disclosed. A ferrofluid layer is disposed between the charging coil and the receiving coil. The ferrofluid layer directs and focuses the magnetic flux field flowing between the charging coil and the receiving coil.
Abstract:
An electronic device has a self-healing elastomer applied over one or more external electronic connectors. The self-healing elastomer may obscure the electronic connectors from the user as well as provide environmental protection for the connector and the electronic device. Electronic probes may temporarily penetrate the self-healing elastomer to mate with the electronic connector. After removal of the probes the self-healing elastomer may elastically reform and self-heal.
Abstract:
An inductive coupling assembly for an electronic device is disclosed. The system may include an electronic device having an enclosure, and an internal inductive charging assembly positioned within the enclosure. The internal inductive charging assembly may include a receive inductive coil positioned within the enclosure. The system may also include a charger in electrical communication with the internal inductive charging assembly of the electronic device. The charger may include a transmit inductive coil aligned with the receive inductive coil. The transmit inductive coil may be configured to be in electrical communication with the receive inductive coil. Additionally, the system can include an inductive coupling assembly positioned between the electronic device and the charger. The inductive coupling assembly may include a field-directing component configured to be in electrical communication with the transmit inductive coil, and/or the receive inductive coil of the internal inductive charging assembly of the electronic device.
Abstract:
Connectors that may provide an improved reliability by having a reduced tendency for damage to their contacts and may have a reduced size and complexity. One example may provide a magnetic connector having a magnetic pin. The magnetic pin may have a plunger that may remain protected in a barrel and housing when the magnetic connector is not engaged with a corresponding connector. When the magnetic connector is engaged with a corresponding connector, the plunger may be magnetically attracted to a corresponding contact on the corresponding connector and may emerge from the barrel or housing to make an electrical connection between the plunger and the corresponding contact.
Abstract:
An electronic device has structures such as substrates and internal housing structures. The substrates may be rigid substrates such as rigid printed circuit boards and flexible substrates such as flexible printed circuits, flexible touch sensor substrates, and flexible display substrates. Carbon nanotubes may be patterned to form carbon nanotube signal paths on the substrates. The signal paths may resist cracking when bent. A flexible structure such as a flexible printed circuit may have carbon nanotube signal paths interposed between polymer layers. Openings in a polymer layer may expose metal solder pads on the carbon nanotube signal paths. A stiffener may be provided under the metal solder pads. Polymer materials in the flexible structure may be molded to form bends. Bends may be formed along edges of a touch sensor or display or may be formed in a flexible printed circuit.
Abstract:
A dual orientation plug connector having a tab portion with first and second opposing exterior surfaces that are substantially identical, parallel and opposite each other. Each exterior surface may have a plurality of electrical contacts. A substantially u-shaped metallic band surrounds a portion of the periphery of the plug connector. A contact assembly having an upper contact carrier, intermediate conductive plate and lower contact carrier may be disposed within the tab portion of the plug connector. A circuit assembly may be disposed within a body portion of the plug connector and electrically coupled to the plurality of electrical contacts.
Abstract:
A dual orientation plug connector having a tab portion with first and second opposing exterior surfaces that are substantially identical, parallel and opposite each other. Each exterior surface may have a plurality of electrical contacts. A substantially u-shaped metallic band surrounds a portion of the periphery of the plug connector. A contact assembly having an upper contact carrier, intermediate conductive plate and lower contact carrier may be disposed within the tab portion of the plug connector. A circuit assembly may be disposed within a body portion of the plug connector and electrically coupled to the plurality of electrical contacts.