Abstract:
Provided is an organic light emitting device, which is flexible and is capable of effectively preventing permeation of oxygen or moisture. The organic light emitting device includes a substrate; a metal sheet that faces the substrate; an organic light emitting unit that is interposed between the substrate and the metal sheet; an adhesive unit that is interposed between the substrate and the metal sheet to adhere the substrate and the metal sheet to each other and that is located around at least the organic light emitting unit; and an adhesive layer that is formed at a location on the metal sheet where the metal sheet contacts the adhesive unit and that is formed of a metal oxide or a metal nitride.
Abstract:
The invention is directed to an organic electroluminescent (EL) display device having an improved light extracting efficiency due to a photonic crystal layer formed proximate one side of a stack. Among other elements, the stack may include a first electrode formed on a substrate, an organic light emitting layer formed above the first electrode, and a second electrode formed above the organic light emitting layer. Additionally, the photonic crystal layer may be configured to correspond to a wavelength of colored light. An organic EL display device having an improved light extracting efficiency may be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the stack.
Abstract:
A laser induced thermal imaging apparatus for imaging an imaging layer of a donor film on an acceptor substrate. The laser induced thermal imaging apparatus includes: a substrate stage having an electromagnet, and adapted to receive an acceptor substrate having a pixel area of the organic light emitting device and a donor film including the organic light emitting layer to be imaged on the pixel area; a laser oscillator for irradiating a laser on the donor film; a contact frame adapted to be located between the substrate stage and the laser oscillator and including an opening portion of a pattern corresponding to a part to be imaged of the donor film and a permanent magnet for forming a magnetic force with the substrate stage; and a contact frame moving mechanism for moving the contact frame toward the substrate stage.
Abstract:
A touch screen display apparatus including a sensor unit to sense and to process light signals and a pixel unit to drive pixels according to the light signal processing performed by the sensor unit. The touch screen display apparatus includes a substrate; a plurality of pixel units disposed on the substrate, wherein each of the pixel units includes a first electrode, a second electrode, and an emission layer interposed between the first electrode and the second electrode; and a plurality of sensor units disposed on the substrate, wherein each of the sensor units includes a sensor first electrode, a sensor second electrode, and an organic light receiving layer interposed between the sensor first electrode and the sensor second electrode.
Abstract:
A donor film for a laser induced thermal imaging method capable of improving the optical efficiency of an emission layer, a light emitting device using the same, and a method of manufacturing the light emitting device are provided. The donor film for a laser induced thermal imaging method includes a base substrate, a light to heat conversion layer (LTHC) provided on the base substrate and having a pattern with a predetermined step difference, and a transfer layer provided on the LTHC. It is possible to improve the optical efficiency of the emission layer by patterning the transfer layer using the LTHC having the pattern with a predetermined step difference.
Abstract:
A laser induced thermal imaging apparatus and a fabricating method of organic light emitting diodes using the same, which laminate an acceptor substrate and a donor film using a magnetic force in vacuum, and are used to form a pixel array on the acceptor substrate. A substrate stage includes a magnet or magnetic substance. The acceptor substrate has a pixel region for forming first, second, and third sub-pixels, and the donor film has an organic light emission layer to be transferred to the pixel region. A laser oscillator irradiates a laser to the donor film. A contact frame is adapted to be disposed between the substrate stage and the laser oscillator, and is used to form a magnetic force with the substrate stage. The contact frame includes an opening through which the laser passes. A contact frame feed mechanism moves the contact frame in a direction of the substrate stage.
Abstract:
A thin film transistor (TFT), a method of fabricating the same, and an organic light emitting diode (OLED) display device having the TFT, the TFT includes a substrate, a protection layer disposed on the substrate, a buffer layer disposed on the protection layer, a semiconductor layer disposed on the buffer layer, a gate electrode disposed on the semiconductor layer, a gate insulating layer to electrically insulate the semiconductor layer from the gate electrode, and source and drain electrodes electrically insulated from the gate electrode and connected to the semiconductor layer. The protection layer is formed of an amine-containing clay. The OLED includes the TFT, an insulating layer disposed on the TFT, a first electrode connected to the drain electrode of the TFT, an organic layer disposed on the first electrode, and a second electrode disposed on the organic layer.
Abstract:
A donor substrate for use in an organic light emitting display comprises a base substrate and a transfer layer disposed on the base substrate. A selective heat generation structure is interposed between the base substrate and the transfer layer. The selective heat generation structure has a heat generation region from which heat is generated by light-to-heat conversion and a heat non-generation region contacting the heat generation region. By employing the donor substrate, it is possible to form minute transfer layer patterns with high accuracy without the need to accurately control the width of a laser beam. A fabrication method of an organic light emitting display comprises disposing the donor substrate on an acceptor substrate, irradiating a laser beam onto the donor substrate, and forming a transfer layer pattern on a pixel electrode of the acceptor substrate.
Abstract:
An organic luminescence device including an electron transport layer, which comprises an electron transporting material and a metal oxide represented by Formula 1: AaOb. In Formula 1: A is Li, Mo, Ba, B, or Cs; a is a number in the range of 1 to 3; and b is a number in the range of 1 to 3. The electron transporting material reduces an electron injection barrier and the resistance at the interface between an EML and an ETL, resulting in an increase in the lifespan of the organic luminescence device. The numbers of holes and electrons injected to the EML are balanced, and driving characteristics of the organic luminescence device are improved.
Abstract:
The invention is directed to an organic electroluminescent (EL) display device having an improved light extracting efficiency due to a photonic crystal layer formed proximate one side of a stack. Among other elements, the stack may include a first electrode formed on a substrate, an organic light emitting layer formed above the first electrode, and a second electrode formed above the organic light emitting layer. Additionally, the photonic crystal layer may be configured to correspond to a wavelength of colored light. An organic EL display device having an improved light extracting efficiency may be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the stack.