Abstract:
In a method for producing electrochromic displays (1, 10) the functional layers, such as the electrodes (3, 4, 6) and electrochromic layer (5) are configured in a printing process. The method enables a particularly cost-effective and flexible production of the display.
Abstract:
The present invention provides a process for forming a substrate for an organic semiconductor component. The process includes the steps of providing a fullerene network (10), providing a semiconductor solution (12), and applying the semiconductor solution (12) to the fullerene network (10), the viscosity of the semiconductor solution (12) being so adjusted that the semiconductor solution (12) infiltrates the pores of the fullerene network (10) and fills it so that the filled network forms a substrate (2). Further provided is a substrate comprising a fullerene network, composed of pure, unsubstituted fullerenes (10), and a semiconductor solution (12). Additionally provided is an organic semiconductor component, particularly an organic solar cell or an organic photodetector, that contains the inventive substrate.
Abstract:
Described is a component with a sharp-edgedly structured layer comprising at least one highly fluid low-viscosity medium (20) having a given solids content on a carrier substrate (10), wherein a boundary layer (14) defining the outside contour of the structured layer is provided on the carrier substrate (10) and the at least one low-viscosity highly fluid medium (20) is provided at the inside surface (18) of the carrier substrate (10), which inside surface is defined by the boundary layer (14).
Abstract:
Methods of using etching pastes to form a pattern on an electrode of a solar cell, as well as related articles, systems, and components, are disclosed.
Abstract:
The invention is an apparatus and method for producing an electronic component comprising at least one active organic layer. The invention discloses for the first time how an organic component can be produced in a process designed entirely as a roll-to-roll process. The advantage of the continuous production method described here is, further, that the active regions of the active semiconductor layer are not exposed to unprotected solvents and/or solvent vapors at any time during the production process. This makes it possible to produce a high-quality organic component.
Abstract:
A programmable display unit for displaying barcodes or, as the case may be, a radio transponder coupled to a programmable display unit of the aforementioned type. The display unit has for the purpose a multiplicity of strip-shaped display elements arranged substantially parallel to and at a predetermined distance from each other. Each strip-shaped display element is controlled independently and can be switched independently. A respectively predetermined number of display elements are used for representing a strip in the barcode. A respectively predetermined number of display elements are analogously used for representing a space in the barcode. The barcode requiring to be represented is composed of a multiplicity of strips and spaces.
Abstract:
This invention relates to a transparent flat body including two transparent cover layers (1, 2) that confine between them an active layer (3) whose transparency varies in an electric field and disposed between two electrode layers (6, 7) optionally subdivided into sections, and a photovoltaic element that is connected to two electrode layers (6, 8), preferably via a control stage (11), and that includes a photoactive layer (4) between the two electrode layers (6, 8) of the photovoltaic element (5), characterized in that the photoactive layer (4) is made of two transparent molecular components in a manner known per se, one of the two electrode layers (6, 7) of the active layer (3) is simultaneously one of the two electrode layers (6, 8) of the photovoltaic element (5), and the two transparent cover layers (1, 2) confine between them both the photovoltaic element (5) and the active layer (3).